(54.81.44.140) 您好!臺灣時間:2017/09/25 01:23          離開系統
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
本論文永久網址: 
研究生:謝明廷
研究生(外文):Ming-Ting Hsieh
論文名稱:桂竹林土根系統調查及其根力特性之研究
論文名稱(外文):Study on Soil/Root System and Root Characteristics of Makino Bamboo Forest
指導教授:林信輝林信輝引用關係
指導教授(外文):Hsin-Hui Lin
學位類別:碩士
校院名稱:國立中興大學
系所名稱:水土保持學系所
學門:農業科學學門
學類:水土保持學類
論文出版年:2009
畢業學年度:97
語文別:中文
論文頁數:84
中文關鍵詞:桂竹林土-根系統剖面法現地鬚根拔出試驗根段拉力試驗
外文關鍵詞:Makino Bamboo forestsoil/root systemprofile wall methodspull-out breakage resistance of in-situ testtensile resistance of root segment test
相關次數:
  • 被引用被引用:2
  • 點閱點閱:333
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
為研究桂竹林(Makino Bamboo Forest)土根系統及其力學特性,選取石門水庫集水區,桃園縣復興鄉桃119線8 K處之桂竹林地為研究樣區。各選取10株3年生桂竹,以剖面法(Profile wall methods)挖掘桂竹之根系剖面(長1 m × 寬1 m × 深0.6 m),調查桂竹根系在土層中之分布情形,並輔以Definiens Professional 5軟體進行影像分類處理;另以現地鬚根拔出試驗與室內根段(地下莖)拉力試驗紀錄桂竹鬚根及地下莖之破壞荷重,以便求取桂竹根系之土-根系統剪力強度增量△Sr,並期瞭解桂竹根系之力學特性。

本研究結果摘錄如下:

1. 桂竹之根系剖面結果顯示,桂竹無垂直主根,地下莖分布深度約在土層深度0~0.3 m之間;鬚根根量豐富,分布深度約在0~0.6 m之間,最深可達0.7~1 m,判斷桂竹之根域範圍對於網結土壤、抵抗地表沖蝕與水分入滲之能力俱佳。

2. 現地鬚根拔出試驗中,發現鬚根根徑d(m)與其Pp拔出斷裂抗力(kN)呈現指數相關,其計算式為:

Pp = 1210.4d2.0008 0.05×10-2 m≦d≦0.4×10-2 m
Pp:拔出斷裂抗力(×10-3kN) d:鬚根根徑(×10-2m)

3. 室內根段(地下莖)拉力試驗中,24組桂竹地下莖試驗平均根徑為0.19 m、平均拉力破壞載重為5.44 kN、平均抗拉強度為19080.2 kN/m2。

4. 綜合上述根系力學特性,可推求桂竹根系之土-根系統剪力強度增量△Sr約介於19.2~92.0 kN/m2 (根系剖面寬1 m × 深0.6 m)。比較台灣杉及柳杉之現地直剪土-根系統剪力強度增量,發現桂竹之土-根系統剪力強度增量較兩者為大。

桂竹根系隨地下莖向外擴充,根部韌性強,盤根錯節相互連結成緊密網狀,就如建築物構造中的基礎結構鋼筋網一樣;鬚根含量豐富能保護土壤避免受雨滴直接的衝擊,提供表層土壤抗沖蝕之能力。桂竹林地崩塌之情形,主要在於受外力之影響,如道路工程挖掘坡腳或地震導致坡面不穩定。桂竹本身受淺根性影響,在根系與土壤層間形成自由端,造成水分由此處滲出,而導致溯源侵蝕的產生。如遇豪大雨,雨水急速灌入土層裂縫,極易發生崩塌之情事。一般而言,桂竹林地若無上述之外力影響,則崩塌與土壤流失之情形並不易發生。
For study the relationships between soil/root system and mechanics characteristics of the Makino Bamboo forest, the experimental site was taken in the Tao-yuan County 119 lines 8 km of Shin-men reservoir. Select 10 Makino Bamboos to observe the distribution of root system by use Profile wall methods(L 1 m × W 1 m × D 0.6 m), and used the Definiens Professional 5 software for image classification. Record hair roots and rhizomes of the destruction of load by using pull-out test of hair root test and tensile test of root segment to find the shear strength increment of soil/root system △Sr.

This research result is excerpted as follows:

1. The result showed that Makino Bamboo no vertical top roots, the rhizomes distribution within 0~0.3 m soil depth. The hair roots distribution within 0~0.6 m soil depth. The results showed that Makino Bamboo have very high capacity network node soil, surface erosion resistance and water infiltration.

2. The hair roots of Makino Bamboo pull-out breakage force to become index number with its diameter just related, its calculation type is:

Pp = 1210.4d2.0008 0.05×10-2 m≦d≦0.4×10-2 m
Pp:pull-out breakage force (×10-3kN) d:hair roots diameter (×10-2m)

3. The tensile resistance of root segment test of rhizomes average root diameter is 0.19 m, average destruction of load is 5.44 kN and average tensile strength is 19080.2 kN/m2.

4. The shear strength increment of soil/root system △Sr is between 19.2~92.0 kN/m2, founded the shear strength increment of soil/root system with Makino Bamboo is greater than Taiwania cryptomerioides Hay and Cryptomeria japonica.
The Makino Bamboo possesses an extremely complicate and random root pattern in the ground and the tightly consolidated soil/root system associated with the root reinforcement can effectively stabilize the slope in a secure situation, the hair roots can avoid direct impact of raindrops and provide surface soil anti-erosion. However, the collapse failure can be mainly resulted from the action of gigantic earthquake vibration force or the impact of road work in the slope which leads to a breakage of root system or the infiltration of rainwater into the fissure of strata which cause a decrease of shear strength of soil mass. In general, the slope with Makino’s Bamboo forest can sustain the collapse failure and soil mass.
謝誌 I
摘要 II
Abstract IV
目錄 VI
圖目錄 VIII
表目錄 XI
第一章 前言 1
1.1前言 1
1.2研究目的 1
1.3研究流程 1
第二章 文獻回顧 3
2.1根系型態分類 3
2.2根系對坡面穩定之影響評估 6
2.3土-根系統之力學模式與邊坡穩定理論 10
2.4根系力學試驗 17
第三章 研究方法 32
3.1試區概述 32
3.2試驗材料概述 35
3.3試驗項目與內容 37
3.4拔出斷裂抗力(簡稱拔斷抗力)之統計迴歸模式 40
3.5土-根系統轉換剖面應力 40
第四章 結果與討論 44
4.1桂竹根系分布情形 44
4.2桂竹根系剖面數化 45
4.3現地鬚根拔斷試驗與室內根段拉力試驗 51
4.4土-根系統轉換剖面應力分析結果 57
4.5桂竹林根系特性與邊坡穩定綜合探討 58
第五章 結論與建議 61
5.1結論 61
5.2建議 63
參考文獻 65
附件一 桂竹根面積比簡圖 70
附件二 現地鬚根拉斷數據 75
1.呂錦明,(1996),「竹類地下莖型態分類之探討」,現代育林12(1):73-90。
2.呂錦明、陳財輝,(1992),「桂竹之林分構造及生物量─桶頭一桂竹林分之例」,林業試驗所研究報告季刊7(1):1-13。
3.吳正雄、陳信雄,(1989),「森林植生根力應用在崩塌地處理上之研究」,中華林學季刊 22(4):3-19。
4.宋煦辰,(2007),「桂竹林根系特性與其引拔力學關係之研究」,國立中興大學水土保持學系碩士論文。
5.林維治,(1958),「台灣竹類生長之研究」,台灣省林業試驗所試驗報告第54號。
6.林維治,(1961),「台灣竹科植物分類之研究」,台灣省林業試驗所報告第69號。
7.林維治、康佐榮、黃松根、江濤,(1962),「台灣主要竹林資源之調查」,台灣省林業試驗所合作報告第4號。
8.林信輝、賴俊帆、陳燿榮,(2007),「桂竹林崩塌地根系型態與其後續崩塌之調查研究」,水土保持學報39(2):173-187。
9.林信輝,(2001),「水土保持植生工程」,高立圖書公司 PP.90-93。
10.林務局,(1975),「台灣區竹林消費與加工運銷調查報告書」,行政院農業發展委員會補助,台灣省政府農林廳林務局執行。
11.吳正雄,(1993),「樹根力與坡面穩定關係之研究」,中華水土保持學報24(2):23-37。
12.高齊治,(1998),「西南部泥岩地區刺竹耐旱特性及其根力特性之研究」,國立中興大學水土保持學系碩士論文。
13.高毓斌,(1987),「桂竹之生長與培育」,現代育林2(2):54-64。
14.陳燿榮,(2006),「桂竹林崩塌機制動態之調查研究」,國立中興大學水土保持學系碩士論文。
15.黃士洋、張俊斌、林信輝,(2007),「石門水庫崩塌地優勢植物根力特性之特性」,環境綠化技術研討會論文集,49~61頁。
16.賴俊帆,(2007),「桂竹林根系拉拔試驗及其坡面之穩定性評估」,國立中興大學水土保持學系碩士論文。
17.戴廣耀、楊寶霖、沈榮江,(1973),「台灣竹林資源」,農復會、林務局、航測隊、屏東農專合作計畫 PP.82。
18.顏正平,(1973),「水土保持植物根系分佈基本型態調查」,中華水土保持學報4(1):65-84。
19.顏正平,(1974),「水土保持木本植物根系分佈類型研究」,國立中興大學編印。
20.顏正平,(2000),「根系型在水土保持適用效能之研究」,水土保持植生工程研討會論文,PP.127-137。
21.顏正平,(2004),「樹木之地下世界─植物根系分布類型之研究」,博學。
22.北村嘉一、難波宣士,(1981),「拔根試驗を通して推定した林木根系崩壞の防止機能」,日本林業試驗所研究報告313:175-208。
23.竹下敬司,(1989),「樹木根系の崩壞防止機能」,林業技術 586:12-16。
24.阿部和時,(1984),「樹木根系の分布特性と斜面の保護∙安定效果」,日本綠化工技術10(3):1-9。
25.阿部和時,(1991),「根系の引き拔き抵抗力によゐセン斷補強度の推定」,日本綠化工學會誌 16(4):37-45。
26.阿部和時,(2007),「樹木根系の表層崩壊防止機能」,2007環境綠化技術研討會論文集。
27.沼田真,(1962),「竹林の生態學」,日本生態學會誌,12(1):32-40。
28.沼田真、岩瀨澈,(1975),「圖說日本の植生」,朝倉書店,東京。
29.Abe, K. and M. Iwamoto., 1986. An evaluation of tree-Roots effect on slope stability by tree-roots strength, J. Forestry Soc., 68(12):505-510.
30.Cofie, P., Koolen, A.J., Perdok, U.D., 2000. Measurement of stress—strain relationship of beech roots and calculation of the reinforcement effect of tree roots in soil—wheel systems, Soil & Tillage Research 57:1-12.
31.Cazzuffi,D. and E. Crippa, 2005, Shear Strength Behaviour of Cohesive Soils Reinforced with Vegetation. 16th International Conference on Soil Mechanics and Geotechnical Engineering, September 12~16, PP.2493~2498.
32.Dupuy, L., Fourcaud, T., Stokes, A., Danjon, F., 2005. A density-based approach for the modelling of root architecture: Application to Maritime pine (Pinus pinaster Ait.) root systems. Journal of Theoretical Biology 236:323-334.
33.Ennos, A.R., 1990. The anchorage of leek seedlings: The effect of root length and soil strength. Annals of Botany 65:409-416.
34.Ennos A.R., 1991, The mechanics of anchorage in wheat (Triticum aestivum L.) II. Anchorage of mature wheat against lodging, Journal of Experimental Botany 42(245):1607-1613.
35.Fan, C.C., Su, C.F., 2008. Role of roots in the shear strength of root-reinforced soils with high moisture content. Ecological engineering 33:157-166.
36.Genet, M., Kokutse, N., Stokes, A., Fourcaud, T., Cai, X., Ji, J., Mickovski, S., 2008. Root reinforcement in plantations of Cryptomeria japonica D. Don: Effect of tree age and stand structure on slope stability. Forest Ecology and Management 256:1517-1526.
37.Gray, D.H., 1970, Effect of forest clear-cutting on the stability of natural slopes. Bull.Assn.Engg.Geol. 7(1):PP.45-66.
38.Gray, D.H. and W.F. Megaham, 1981, Forest vegetation removal and slope stability in the Idaho batholith. Intermountain forest and range exprement station research paper int-271, Forest service U.S.
39.Gray, H.G. and Sotir, R.B., 1996, Biotechnical and soil bioengineering- Slope stabilization. John Wiley & Sons,Inc.
40.Greenway, D.R., 1987, Vegetation and Slope stability, in: Slope stability.Edited by M.G. Anderson and K.S. Richards, John Wiley & Sons Ltd.
41.Karl, J. N., Francisco, M.F., Clara, T.O., Dominick, J.P., 2002. The biomechanics of Pachycereus pringlei root systems, American Journal of Botany 89(1):12-21.
42.Li, S.C., Sun, H.L., Yang, Z.R., Xiong, W.L., Cui, B.S., 2007. Root anchorage of Vitex negundo L. on rocky slopes under different weathering degrees. Ecological engineering 30:27-33.
43.Normaniza, O., Faisal, H.A., Barakbah, S.S., 2008. Engineering properties of Leucaena leucocephala for prevention of slope failure. Ecological engineering 32:215-221.
44.Osman, N., Barakbah, S.S., 2006. Parameters to predict slope stability—Soil water and root profiles. Ecological engineering 28:90-95.
45.Operstrin,V. and S. Frydman, 2000, The Influence of Vegetation on Soil Strength, Ground Improvement, 4: PP.181~91.
46.Operstrin,V. and S. Frydman, 2001, Numerical simulation of direct shear of root-reinforced soil. Ground Improvement 5, PP163-168.
47.Operstrin,V. and S. Frydman, 2002, The Stability of Soil Slopes Stabilised with Vegetation, Ground Improvement, 6: PP.163~168.
48.Raymond H. Myers., 1986, Classical and Modern Regression with Applications. PWS and Kent Publishing Co.
49.Sun, H.L., Li, S.C., Xiong, W.L., Yang, Z.R., Cui, B.S., T.Y., 2008. Influence of slope on root system anchorage of Pinus yunnanensis. Ecological engineering 32:60-67.
50.Tien H. Wu., 1976, Investigation of landslides on prince of wales island Alaska. Geotechnical engineering report No.5, Department cilivel engineering ohio stste university, Columbus. P.94.
51.Tien H. Wu. And William P. McKinnell III and Douglas N. Swanston, 1979, Strength of tree roots and landslides on Prince of Wales Island. Alaska. Can. Geotech.J. 16:PP.19-33.
52.Tien H. Wu William P. Mckinnell Ⅲ and Douglas N. Swanston, 1979, Strength of Tree Roots and Landslides on Prince of Wales Island, Alaska. Can. Geotech. J. 16: PP.19~33.
53.Tien H. Wu and Chinchun Lan, 1988, In situ shear test of soil-root systems. Journal of Geotechnical Engineering. 114(12):PP.1351-1357.
54.Tien H. Wu, 1994, Slope Stabilization Using Vegetation. Geotechnical Engineering Emerging Trends in Design and Practice. PP.377~402.
55.Tien H. Wu,Alex J. Watson and Mohamed A. El-Khouly, 2004, Soil-Root Interaction and Slope Stability, Ground and Water Bioengineering for Erosion Control and Slope Stabilization. PP.183~192.
56.Waldron, L. J., 1977, The Shear Resistance of Root-Permeated Homogeneous and Stratified Soil, Soil Science Society American J. 41: PP.843~849.
57.Waldron, L. J. and Suren Dakessian, 1981, Soil Reinforcement by Roots: Calculation of Increased Soil Shear Resistance from Root Properties. Soil Science 132(6): PP.427~435.
58.Zhou, Y., Watts, D., Li, Y., Cheng, X., 1998. A case study of effect of lateral roots of Pinus yunnanensis on shallow soil reinforcement. Forest Ecology and Management 103:107- 120.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. 1. 呂錦明,(1996),「竹類地下莖型態分類之探討」,現代育林12(1):73-90。
2. 1. 呂錦明,(1996),「竹類地下莖型態分類之探討」,現代育林12(1):73-90。
3. 2. 呂錦明、陳財輝,(1992),「桂竹之林分構造及生物量─桶頭一桂竹林分之例」,林業試驗所研究報告季刊7(1):1-13。
4. 2. 呂錦明、陳財輝,(1992),「桂竹之林分構造及生物量─桶頭一桂竹林分之例」,林業試驗所研究報告季刊7(1):1-13。
5. 3. 吳正雄、陳信雄,(1989),「森林植生根力應用在崩塌地處理上之研究」,中華林學季刊 22(4):3-19。
6. 3. 吳正雄、陳信雄,(1989),「森林植生根力應用在崩塌地處理上之研究」,中華林學季刊 22(4):3-19。
7. 8. 林信輝、賴俊帆、陳燿榮,(2007),「桂竹林崩塌地根系型態與其後續崩塌之調查研究」,水土保持學報39(2):173-187。
8. 8. 林信輝、賴俊帆、陳燿榮,(2007),「桂竹林崩塌地根系型態與其後續崩塌之調查研究」,水土保持學報39(2):173-187。
9. 11. 吳正雄,(1993),「樹根力與坡面穩定關係之研究」,中華水土保持學報24(2):23-37。
10. 11. 吳正雄,(1993),「樹根力與坡面穩定關係之研究」,中華水土保持學報24(2):23-37。
11. 13. 高毓斌,(1987),「桂竹之生長與培育」,現代育林2(2):54-64。
12. 13. 高毓斌,(1987),「桂竹之生長與培育」,現代育林2(2):54-64。
13. 21. 顏正平,(2004),「樹木之地下世界─植物根系分布類型之研究」,博學。
14. 21. 顏正平,(2004),「樹木之地下世界─植物根系分布類型之研究」,博學。
 
系統版面圖檔 系統版面圖檔