跳到主要內容

臺灣博碩士論文加值系統

(44.200.175.46) 您好!臺灣時間:2024/03/29 21:59
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:范晏慈
研究生(外文):Yen-Tzu Fan
論文名稱:地下水活動對都市下游河川生態系統的重要性─以台灣景美溪為例
論文名稱(外文):Importance of groundwater activities in downstream urban river ecosystem: A case study in Jingmei River, Taiwan
指導教授:任秀慧任秀慧引用關係
口試委員:林幸助許少華
口試日期:2013-06-21
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:生物環境系統工程學研究所
學門:工程學門
學類:土木工程學類
論文種類:學術論文
論文出版年:2013
畢業學年度:101
語文別:英文
論文頁數:125
中文關鍵詞:湧泉坑都市化魚類隔絕實驗底棲動物族群結構穩定碳氮同位素營養基礎
外文關鍵詞:spring piturbanizationfish exclusion experimentbenthic invertebrate community structurestable carbon and nitrogen isotope analysistrophic basis
相關次數:
  • 被引用被引用:0
  • 點閱點閱:690
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
在河川環境中,地下水與表面水交換是維持河川水文與物質通量,以及生態系統健康的重要的過程。這種水體垂直交換的特性可提升棲地的複雜性,改變河川表面水的物理化學特性如導電度、水溫、氧化還原電位、溶氧及pH等,進而影響生物的分布及能量的流動,包括提升物種類群豐富度、生物多樣性及生物族群結構的改變等。另外,地下水的活動具有季節的變異,以臺北盆地為例,地下水的豐水期是每年的3-7月間,而枯水期則介於9-10月間,此季節的動態會使河川水體環境隨之變異,增加時間上的複雜性以提升河川棲地的品質。然而,隨著人口快速增加及都市發展,下游河川大多已被渠道化以防止溪水暴漲導致的洪水及增加都市土地的利用,有些河川的河床甚至改造為不透水的水泥底床,這導致都市型河川失去地下水與表面水交換的自然特性。另外,都市化的結果導致外來種魚類成為優勢種族群危害原生種族群,降低河川的棲地品質。因此,本研究針對都市型河川河床的小尺度範圍,分別探討「直接受地下水影響」及「未受地下水影響」的區域,研究地下水活動對河川水質、棲地品質、生物族群結構及食物網結構的影響。
本研究的研究地點位於臺北盆地內景美溪下游的都市河段。臺北盆地含有豐富的地下水層,特別是在景美地區,地下水含量豐富且水位非常接近地表,有利於表面水及地下水交換的過程。然而,臺北盆地是臺灣地區人口最集中及都市化最嚴重的地區之一,盆地中許多河川皆已整治成三面光的不透水河道。景美溪的兩岸有經過渠道化的工程,但其河床未經過整治,仍維持著地下水與表面水交換的特性,地下水活動會改變河床結構因而形成坑洞。然而,景美溪下游的優勢種魚類為外來種口孵尼羅吳郭魚(Cichlidae: Oreochromis niloticus),其擁有一特殊繁殖行為是公魚會在河床挖一碗狀坑洞做築以吸引母魚進行交配。本研究發現景美溪的河床有許多碗形坑洞,因無法以肉眼辨別坑洞之形成是由於地下水活動或魚類繁殖行為所致,故我們藉由吳郭魚隔絕實驗(fish exclusion experiment)證實地下水活動確實會在河床形成坑狀結構。另外,為了進一步了解景美溪下游地下水活動的機制為上湧(upwelling)還是下沉(downwelling),我們在坑內及坑外進行水流可視化(flow visualization)的實驗,藉測量顏料受地吸引力及地下水活動往下移動的速率,探討地下水與表面水互動的模式,同時我們亦比較坑內環境及坑外環境以探討景美溪水質受地下水影響的差異。此外,本研究探討坑內及坑外無脊椎生物的族群結構(物種類群豐富度、密度、生物多樣性等)的差異以了解河川生物對地下水活動的反應,以及利用穩定碳氮同位素分析(stable carbon and nitrogen isotope analysis)景美溪下游地下水資源對河川食物網結構之影響。
研究結果顯示在隔絕吳郭魚進入的區域下,河床仍然有坑形成,顯示出底床上的坑洞並非魚類繁殖行為所形成,而景美溪確實保有地下水與表面水交換的特性。水流可視化實驗的結果呈現出坑內顏料下沉的速率顯著較慢(1-way ANOVA, p < 0.05),這確定景美溪下游地下水和表面水活動以地下水上湧為主。另外,坑內水的導電度、總溶解固體、氧化還原電位、pH及水溫和坑外的河水有顯著的不同(1-way ANOVA, p < 0.05),表示直接受到地下水活動影響的區域和未受到地下水影響區域的水質有差異。生物的結果方面,雖然坑內的物種類群豐富度及生物多樣性並未高於坑外,但在坑內的底土層中有較高的無脊椎生物密度,顯示出地下水可提供更多的資源供給無脊椎生物生存。此外,景美溪下游魚類的營養基礎來自坑內的資源所佔的比例很高(~ 40 %),因受地下水影響食物資源的碳氮比(C/N ratio)較低,能較有效的被消費者使用。本研究的結果證實地下水活動會影響都市型下游河川棲地的品質,為將來都市型下游河川復育提供重要的資料。


In river ecosystems, groundwater (GW) and surface water (SW) exchange is an important natural process for maintaining vertical hydrological connectivity, material fluxes and ecosystem health. The vertical GW-SW exchange could increase the habitat complexity and maintain the stability of the water physiochemistry and hydrology in the rivers. Spatial variation of GW-SW exchange pattern could represent a key factor for characterizing aquatic biodiversity and faunal community structure. Also, GW activities exhibit seasonality resulting in the dynamic patterns of river ecosystems. In the northern Taiwan, high GW level in Taipei basin during March to July and low level during September to October are influenced by the seasonal variation of precipitation and evaporation. Such temporal variation could thus be important for enhance the diversity of river habitat and aquatic biota. However, Taiwan as other countries in the world, it has been rapid population increase and urban development since the recent decades, most downstream rivers have been channelized to avoid flood and increase urban land use. River beds of some channelized rivers are commonly covered with impermeable concrete materials. This man-made structure causes the blockage of GW-SW exchange. Also, urbanization usually results in the dominance of invasive species in aquatic ecosystems and this can endanger the native communities. In this study, we first carried out small-scale field manipulative experiment on river bed of Jingmei River and compared the areas of “pit” (depression structure directly caused by GW) and “non-pit” (areas not directly affected by GW activities) to investigate the influences such as water and habitat quality, faunal composition, and the trophic basis associated with GW activities in an urban river ecosystem.
Our study site located at the downstream Jingmei River in the Taipei basin where sufficient GW layer lies underground. Taipei basin is one of the densely urbanized areas and most rivers in the basin are channelized with impervious river bed to reduce flood impacts. However, sufficient GW layer widely extends underneath the Taipei basin especially at Jingmei district. The downstream Jingmei River is channelized at both river banks but the river bed remains unmodified so that GW-SW exchange could be maintained. In addition, the dominant fish in downstream Jingmei River is dominated by tilapia (Cichlidae: Oreochromis niloticus) which has a special breeding behavior that male fish make bowl-shaped craters to attract the female for spawning. As we found many bowl-shaped pits on the river bedduring our preliminary survey, we conducted the fish exclusion experiment to confirm whether the pits were formed from GW activity or fish breeding behavior in downstream Jingmei River. Then, flow visualization experiment was undertaken at pits and control locations to determine the direction of the GW activity in Jingmei River. We further compared the water chemistry between pits and non-pits to determine the differences of water quality influenced by GW activities. In addition, we investigated the invertebrate biodiversity and community structure at pits and non-pits to evaluate the biological response to GW activity. Finally, we used stable carbon and nitrogen isotope analysis in conjunction with gut content analysis to study the GW influence on the trophic basis in downstream Jingmei River.
As the bowl-shaped pits were formed under both the fish exclusion and control areas, our results confirmed that GW-SW exchange did occur in downstream Jingmei River. Flow visualization experiment results revealed that the sinking rate at pits was significantly lower than at non-pits (1-way ANOVA, p < 0.05). This indicated that the GW activities at pits was via GW upwelling. In addition, conductivity, TDS, ORP, pH, and water temperature were significantly different between pits and non-pits (1-way ANOVA, p < 0.05) suggesting that GW activities strongly affected the water quality in this urban river. Moreover, our study showed that invertebrate density was higher in subsurface sediment at pits although the taxon richness and biodiversity of invertebrates were not particularly higher at pits than non-pits. This indicated that GW influenced pits by providing more suitable habitats to support high faunal density. Our findings also showed that fishes utilized high proportion (~ 40%) of pit resources in Jingmei River. Since food resources of pits were characterized by lower C/N ratio, consumers tended to use the pit resources and the dependence of pit resources was related to ontogenetic development of tilapia. Our study confirmed that GW activities could effectively enhance the habitat quality through increasing the habitat diversity in the hydromorphologically homogeneous urban river. Hence, our results could provide important information for the urban river restoration in the future.


口試委員會審定書. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . i
Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii
Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii
摘要. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi
Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii
List of figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiii
List of tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xvii
List of plates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xix

1. Chapter I –
Seasonal changes in environmental parameters associated with groundwater activities in a downstream urban river
1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1.1 Groundwater-dependent river ecosystem. . . . . . . . . . . . . . . . . . 1
1.1.2 Hydrological and chemical importance of hyporheic zones . . . 3
1.1.3 Seasonal variation in hyporheic zones . . . . . . . . . . . . . . . . . . . . 5
1.1.4 Urbanization impacts on GW-dependent river ecosystems . . . . 6
1.1.5 Influences of introduced fish in urban river ecosystems . . . . . . 8
1.1.6 The knowledge gaps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.1.7 Bowl-shaped pits in downstream Jingmei River: fish spawning craters or GW activities? . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.1.8 Hypothesis and aims . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
1.2 Materials and methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
1.2.1 Study sites . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
1.2.1-1 Jimgmei River . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .14
1.2.1-2 Other study sites . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
1.2.2 Habitats survey and water analysis . . . . . . . . . . . . . . . . . . . . . .16
1.2.3 Fish exclusion experiment . . . . . . . . . . . . . . . . . . . . . . . . . . . . .18
1.2.4 Flow visualization experiment . . . . . . . . . . . . . . . . . . . . . . . . . .19
1.2.5 Statistical analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
1.2.5-1 Fish exclusion experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
1.2.5-2 Flow visualization experiments . . . . . . . . . . . . . . . . . . . . . . . .20
1.2.5-3 Environmental differences between pits and non-pits . . . . . . 21
1.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .21
1.3.1 Seasonal variations of bowl-shaped pits in Jingmei River . . . . 21
1.3.2 Were the bowl-shaped pits formed by tilapia breeding behavior or GW activities?. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
1.3.3 Flow visualization experiment . . . . . . . . . . . . . . . . . . . . . . . . . 24
1.3.4 Environmental conditions in downstream Jingmei River . . . . . 25
1.3.5 Environmental conditions between pits and non-pits . . . . . . . . 26
1.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
1.4.1 Cause of formation for the bowl-shaped pits on river bed of a lowland urban river . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .29
1.4.2 Seasonal variations and bowl-shaped pits in Jingmei River . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
1.4.3 Can the shape of pits indicate the influences of GW upwelling? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
1.4.4 Effects of GW upwelling in environmentally degraded urban river . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
1.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

2. Chapter II –
Biological responses to GW upwelling in a downstream urban river
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .52
2.1.1 Biological importance of GW input in river ecosystems . . . . . 52
2.1.2 The biological impacts of urbanization in river ecosystems . . .53
2.1.3 Stable isotope analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
2.1.4 Hypothesis and aims . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .57
2.2 Materials and methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
2.2.1 Study site . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .58
2.2.2 Biological sample collection . . . . . . . . . . . . . . . . . . . . . . . . . . .58
2.2.3 Laboratory procedures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .60
2.2.4 Stable isotope analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
2.2.5 Statistical analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .62
2.2.5-1 Heterogeneity diversity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .62
2.2.5-2 Contribution of food sources . . . . . . . . . . . . . . . . . . . . . . . . . .64
2.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .65
2.3.1 Invertebrate biodiversity at pits and non-pits on surface sediment and in subsurface sediment . . . . . . . . . . . . . . . . . . . . . . . . . . . .65
2.3.2 Invertebrate community composition . . . . . . . . . . . . . . . . . . . . 67
2.3.3 Stable carbon and nitrogen isotope analysis . . . . . . . . . . . . . . . 68
2.3.3-1 Riparian plants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .68
2.3.3-2 Particulate organic matters . . . . . . . . . . . . . . . . . . . . . . . . . . . .69
2.3.3-3 Periphyton . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .69
2.3.3-4 Invertebrates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
2.3.3-5 Fishes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
2.3.4 Seasonal variation in stable carbon and nitrogen isotopic ratios. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
2.3.5 Feasible food contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . .72
2.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .74
2.4.1 Biodiversity of invertebrates at pits and at non-pits. . . . . . . . . .74
2.4.1-1 Surface sediment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .74
2.4.1-2 Subsurface sediment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .76
2.4.2 Stable isotope analysis in the river food web . . . . . . . . . . . . . . 77
2.4.2-1 Carbon sources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
2.4.2-2 Trophic structure and food contribution to consumers . . . . . .78
2.4.2-3 Energy flow in downstream Jingmei River . . . . . . . . . . . . . . .80
2.4.3 Is GW upwelling important to downstream urban river? . . . . . 81
2.4.4 Restoration strategies in downstream urban river . . . . . . . . . . 82
2.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .101


Allan, J.D. (2007) Stream ecology: structure and function of running waters (2nd eds), Chapman & Hall, New York.
Anibas, C., Buis, K., Verhoeven, R., Meire, P. & Batelaan, O. (2011) A simple thermal mapping method for seasonal spatial patterns of groundwater-surface water interaction. Journal of Hydrology, 397, 93-104.
APHA (2005) Standard methods for the examination of water and wastewater: including bottom sediments and sludges (21st eds.), American Public Health Association, New York.
Arnold, C.L., Boison, P.J. & Patton, P.C. (1982) Sawmill brook: an example of rapid geomorphic change related to urbanization. Journal of Geology, 90, 155-166.
Barquin, J. & Death, R.G. (2004) Patterns of invertebrate diversity in streams and freshwater springs in Northern Spain. Archiv Fur Hydrobiologie, 161, 329-349.
Baxter, C.V. & Hauer, F.R. (2000) Geomorphology, hyporheic exchange, and selection of spawning habitat by bull trout (Salvelinus confluentus). Canadian Journal of Fisheries and Aquatic Sciences, 57, 1470-1481.
Bayram, A., Onsoy, H., Bulut, V.N. & Akinci, G. (2013) Influences of urban wastewaters on the stream water quality: a case study from Gumushane Province, Turkey. Environmental Monitoring and Assessment, 185, 1285-1303.
Ben-David, M., Flynn, R.W. & Schell, D.M. (1997) Annual and seasonal changes in diets of martens: Evidence from stable isotope analysis. Oecologia, 111, 280-291.
Best, J. (2005) The fluid dynamics of river dunes: A review and some future research directions. Journal of Geophysical Research-Earth Surface, 110, F04S02.
Binning, S.A., Chapman, L.J. & Cosandey-Godin, A. (2009) Specialized morphology for a generalist diet: evidence for Liem''s Paradox in a cichlid fish. Journal of Fish Biology, 75, 1683-1699.
Boulton, A.J. (2007) Hyporheic rehabilitation in rivers: restoring vertical connectivity. Freshwater Biology, 52, 632-650.
Boulton, A.J., Datry, T., Kasahara, T., Mutz, M. & Stanford, J.A. (2010) Ecology and management of the hyporheic zone: stream-groundwater interactions of running waters and their floodplains. Journal of the North American Benthological Society, 29, 26-40.
Boulton, A.J., Findlay, S., Marmonier, P., Stanley, E.H. & Valett, H.M. (1998) The functional significance of the hyporheic zone in streams and rivers. Annual Review of Ecology and Systematics, 29, 59-81.
Boulton, A.J. & Hancock, P.J. (2006) Rivers as groundwater-dependent ecosystems: a review of degrees of dependency, riverine processes and management implications. Australian Journal of Botany, 54, 133-144.
Brasher, A.M.D., Luton, C.D., Goodbred, S.L. & Wolff, R.H. (2006) Invasion patterns along elevation and urbanization gradients in Hawaiian streams. Transactions of the American Fisheries Society, 135, 1109-1129.
Brewer, S.K. (2013) Groundwater influences on the distribution and abundance of riverine smallmouth bass, Micropterus Dolomieu, in pasture landscapes of the midwestern USA. River Research and Applications, 29, 269-278.
Brown, L.E., Milner, A.M. & Hannah, D.M. (2006) Stability and persistence of alpine stream macroinvertebrate communities and the role of physicochemical habitat variables. Hydrobiologia, 560, 159-173.
Brunke, M. & Gonser, T. (1997) The ecological significance of exchange processes between rivers and groundwater. Freshwater Biology, 37, 1-33.
Calizza, E., Costantini, M.L., Rossi, D., Carlino, P. & Rossi, L. (2012) Effects of disturbance on an urban river food web. Freshwater Biology, 57, 2613-2628.
Camargo, J.A. & Alonso, A. (2006) Ecological and toxicological effects of inorganic nitrogen pollution in aquatic ecosystems: A global assessment. Environment International, 32, 831-849.
Canonico, G.C., Arthington, A., McCrary, J.K. & Thieme, M.L. (2005) The effects of introduced tilapias on native biodiversity. Aquatic Conservation-Marine and Freshwater Ecosystems, 15, 463-483.
Chu, C., Jones, N.E., Mandrak, N.E., Piggott, A.R. & Minns, C.K. (2008) The influence of air temperature, groundwater discharge, and climate change on the thermal diversity of stream fishes in southern Ontario watersheds. Canadian Journal of Fisheries and Aquatic Sciences, 65, 297-308.
Clarke, K.R. (1993) Non-parametric multivariate analyses of changes in community structure. Australian Journal of Ecology, 18, 117-143.
Craig, H. (1957) Isotopic standards for carbon and oxygen and correction factors for mass-spectrometric analysis of carbon dioxide. Geochimica Et Cosmochimica Acta, 12, 133-149.
Cummins, K.W. & Klug, M.J. (1979) Feeding ecology of stream invertebrates. Annual Review of Ecology and Systematics, 10, 147-172.
Dahm, C.N., Grimm, N.B., Marmonier, P., Valett, H.M. & Vervier, P. (1998) Nutrient dynamics at the interface between surface waters and groundwaters. Freshwater Biology, 40, 427-451.
De Silva, S.S., Nguyen, T.T.T., Abery, N.W. & Amarasinghe, U.S. (2006) An evaluation of the role and impacts of alien finfish in Asian inland aquaculture. Aquaculture Research, 37, 1-17.
DeNiro, M.J. & Epstein, S. (1978) Influence of diet on the distribution of carbon isotopes in animals. Geochimica Et Cosmochimica Acta, 42, 495-506.
DeNiro, M.J. & Epstein, S. (1981) Influence of diet on the distribution of nitrogen isotopes in animals. Geochimica Et Cosmochimica Acta, 45, 341-351.
Diehl, S. (1995) Direct and indirect effects of omnivory in a littoral lake community. Ecology, 76, 1727-1740.
Dole-Olivier, M.J., Marmonier, P. & Beffy, J.L. (1997) Response of invertebrates to lotic disturbance: Is the hyporheic zone a patchy refugium? Freshwater Biology, 37, 257-276.
Dole-Olivier, M.J., Malard, F., Martin, D., Lefebure, T. & Gibert, J. (2009) Relationships between environmental variables and groundwater biodiversity at the regional scale. Freshwater Biology, 54, 797-813.
Draganits, E. & Janda, C. (2003) Subaqueous artesian springs and associated spring pits in a Himalayan pond. Boreas, 32, 436-442.
Ellis, B.K., Stanford, J.A. & Ward, J.V. (1998) Microbial assemblages and production in alluvial aquifers of the Flathead River, Montana, USA. Journal of the North American Benthological Society, 17, 382-402.
Febria, C.M., Fulthorpe, R.R. & Williams, D.D. (2010) Characterizing seasonal changes in physicochemistry and bacterial community composition in hyporheic sediments. Hydrobiologia, 647, 113-126.
Findlay, S. (1995) Importance of surface-subsurface exchange in stream ecosystems: the hyporheic zone. Limnology and Oceanography, 40, 159-164.
Finlay, J.C. (2011) Stream size and human influences on ecosystem production in river networks. Ecosphere, 2, 1-21.
Fortes-Silva, R., Rosa, P.V., Zamora, S. & Sanchez-Vazquez, F.J. (2012) Dietary self-selection of protein-unbalanced diets supplemented with three essential amino acids in Nile tilapia. Physiology & Behavior, 105, 639-644.
France, R.L. (1995) Differentiation between littoral and pelagic food webs in lakes using stable carbon isotopes. Limnology and Oceanography, 40, 1310-1313.
Franssen, J., Pepino, M., Lapointe, M. & Magnan, P. (2013) Alternative tactics in spawning site selection by brook trout (Salvelinus fontinalis) related to incubation microhabitats in a harsh winter environment. Freshwater Biology, 58, 142-158.
Garrett, C.G., Vulava, V.M., Callahan, T.J. & Jones, M.L. (2012) Groundwater-surface water interactions in a lowland watershed: source contribution to stream flow. Hydrological Processes, 26, 3195-3206.
Geist, D.R. & Dauble, D.D. (1998) Redd site selection and spawning habitat use by fall chinook salmon: The importance of geomorphic features in large rivers. Environmental Management, 22, 665-669.
Gozlan, R.E., Britton, J.R., Cowx, I. & Copp, G.H. (2010) Current knowledge on non-native freshwater fish introductions. Journal of Fish Biology, 76, 751-786.
Gray, D.P., Harding, J.S., Elberling, B., Horton, T., Clough, T.J. & Winterbourn, M.J. (2011) Carbon cycling in floodplain ecosystems: out-gassing and photosynthesis transmit soil δ13C gradient through stream food webs. Ecosystems, 14, 583-597.
Gray, J.S. (2000) The measurement of marine species diversity, with an application to the benthic fauna of the Norwegian continental shelf. Journal of Experimental Marine Biology and Ecology, 250, 23-49.
Gray, J.S., Wu, R.S.S. & Or, Y.Y. (2002) Effects of hypoxia and organic enrichment on the coastal marine environment. Marine Ecology Progress Series, 238, 249-279.
Gray, L. (2004) Changes in water quality and macroinvertebrate communities resulting from urban stormflows in the Provo River, Utah, USA. Hydrobiologia, 518, 33-46.
Gregory, K.J. (2006) The human role in changing river channels. Geomorphology, 79, 172-191.
Hahn, H.J. & Matzke, D. (2005) A comparison of stygofauna communities inside and outside groundwater bores. Limnologica, 35, 31-44.
Hendricks, S.P. (1993) Microbial ecology of the hyporheic zone: a perspective integrating hydrology and biology. Journal of the North American Benthological Society, 12, 70-78.
Huang, Z.H. (2012) Biological community metabolism of spring pits in Jingmei River. Master Thesis, National Chung Hsing University, ROC. (in Chinese)
Hynes, H.B.N. (1983) Groundwater and stream ecology. Hydrobiologia, 100, 93-99.
Jacobs, L.A., von Gunten, H.R., Keil, R. & Kuslys, M. (1988) Geochemical changes along a river-groundwater infiltration flow path: Glattfelden, Switzerland. Geochimica Et Cosmochimica Acta, 52, 2693-2706.
Jarvie, H.P., Neal, C., Leach, D.V., Ryland, G.P., House, W.A. & Robson, A.J. (1997) Major ion concentrations and the inorganic carbon chemistry of the Humber rivers. Science of the Total Environment, 194, 285-302.
Jickells, T.D. (1998) Nutrient biogeochemistry of the coastal zone. Science, 281, 217-222.
Jones, J.B. & Holmes, R.M. (1996) Surface-subsurface interactions in stream ecosystems. Trends in Ecology & Evolution, 11, 239-242.
Junk, G. & Svec, H.J. (1958) The absolute abundance of the nitrogen isotopes in the atmosphere and compressed gas from various sources. Geochimica Et Cosmochimica Acta, 14, 234-243.
Keleher, M.J. & Rader, R.B. (2008) Bioassessment of artesian springs in the Bonneville Basin, Utah, USA. Wetlands, 28, 1048-1059.
Kelleway, J., Mazumder, D., Wilson, G.G., Saintilan, N., Knowles, L., Iles, J. & Kobayashi, T. (2010) Trophic structure of benthic resources and consumers varies across a regulated floodplain wetland. Marine and Freshwater Research, 61, 430-440.
Kellogg, K.A., Stauffer, J.R. & McKaye, K.R. (2000) Characteristics that influence male reproductive success on a lek of Lethrinops c.f. parvidens (Teleostei : Cichlidae). Behavioral Ecology and Sociobiology, 47, 164-170.
Kelly, B.P. & Blevins, D.W. (1995) Vertical Hydraulic Conductivity of Soil and Potentiometric Surface of the Missouri River Alluvial Aquifer at Kansas City, Missouri and Kansas August 1992 and January 1993. U.S. Geological Survey, 22 p.
Klove, B., Ala-Aho, P., Bertrand, G., Boukalova, Z., Erturk, A., Goldscheider, N., Ilmonen, J., Karakaya, N., Kupfersberger, H., Kvoerner, J., Lundberg, A., Mileusnić, M., Moszczynska, A., Muotka, T., Preda, E., Rossi, P., Siergieiev, D., Šimek, J., Wachniew, P., Angheluta, V. & Widerlund, A. (2011) Groundwater dependent ecosystems. Part I: Hydroecological status and trends. Environmental Science & Policy, 14, 770-781.
Kobayashi, S., Akamatsu, F., Amano, K., Nakanishi, S. & Oshima, Y. (2011) Longitudinal changes in δ13C of riffle macroinvertebrates from mountain to lowland sections of a gravel-bed river. Freshwater Biology, 56, 1434-1446.
Kon, K., Kurokura, H. & Tongnunui, P. (2011) Influence of a microhabitat on the structuring of the benthic macrofaunal community in a mangrove forest. Hydrobiologia, 671, 205-216.
Larson, E.R. & Olden, J.D. (2013) Crayfish occupancy and abundance in lakes of the Pacific Northwest, USA. Freshwater Science, 32, 94-107.
Lee, S.Y., Dunn, R.J.K., Young, R.A., Connolly, R.M., Dale, P.E.R., Dehayr, R., Lemckert, C.J., Mckinnon, S., Powell, B., Teasdale, P.R. & Welsh, D.T. (2006) Impact of urbanization on coastal wetland structure and function. Austral Ecology, 31, 149-163.
Liboriussen, L., Jeppesen, E., Bramm, M.E. & Lassen, M.F. (2005) Periphyton-macroinvertebrate interactions in light and fish manipulated enclosures in a clear and a turbid shallow lake. Aquatic Ecology, 39, 23-39.
Liess, A., Le Gros, A., Wagenhoff, A., Townsend, C.R. & Matthaei, C.D. (2012) Landuse intensity in stream catchments affects the benthic food web: consequences for nutrient supply, periphyton C:nutrient ratios, and invertebrate richness and abundance. Freshwater Science, 31, 813-824.
Linde, A.R., Izquierdo, J.I., Moreira, J.C. & Garcia-Vazquez, E. (2008) Invasive tilapia juveniles are associated with degraded river habitats. Aquatic Conservation-Marine and Freshwater Ecosystems, 18, 891-895.
Madej, G., Barczyk, G. & Gawenda, I. (2011) Importance of microhabitats for preservation of species diversity, on the basis of Mesostigmatid mites (Mesostigmata, Arachnida, Acari). Polish Journal of Environmental Studies, 20, 961-968.
Malcolm, I.A., Soulsby, C., Youngson, A.F. & Hannah, D.M. (2005) Catchment-scale controls on groundwater-surface water interactions in the hyporheic zone: Implications for salmon embryo survival. River Research and Applications, 21, 977-989.
Marfia, A.M., Krishnamurthy, R.V., Atekwana, E.A. & Panton, W.F. (2004) Isotopic and geochemical evolution of ground and surface waters in a karst dominated geological setting: A case study from Belize, Central America. Applied Geochemistry, 19, 937-946.
Massari, F., Ghibaudo, G., D''alessandro, A. & Davaud, E. (2001) Water-upwelling pipes and soft-sediment-deformation structures in lower Pleistocene calcarenites (Salento, southern Italy). Geological Society of America Bulletin, 113, 545-560.
Matuszak, A., Voigt, C.C., Storch, I., Bauer, H.G. & Quillfeldt, P. (2011) Depth-specific and spatiotemporal variation of δ13C and δ15N in Charophytes of Lake Constance: implications for food web studies. Rapid Communications in Mass Spectrometry, 25, 2089-2094.
McClelland, J.W., Valiela, I. & Michener, R.H. (1997) Nitrogen-stable isotope signatures in estuarine food webs: A record of increasing urbanization in coastal watersheds. Limnology and Oceanography, 42, 930-937.
McCutchan, J.H., Lewis, W.M., Kendall, C. & McGrath, C.C. (2003) Variation in trophic shift for stable isotope ratios of carbon, nitrogen, and sulfur. Oikos, 102, 378-390.
Mendonca, F.Z., Volpato, G.L., Costa-Ferreira, R.S. & Goncalves-de-Freitas, E. (2010) Substratum choice for nesting in male Nile tilapia Oreochromis niloticus. Journal of Fish Biology, 77, 1439-1445.
Minagawa, M. & Wada, E. (1984) Stepwise enrichment of 15N along food chains: further evidence and the relation between δ15N and animal age. Geochimica Et Cosmochimica Acta, 48, 1135-1140.
Misra, A.K. (2011) Impact of urbanization on the hydrology of Ganga Basin (India). Water Resources Management, 25, 705-719.
Morrissey, C.A., Boldt, A., Mapstone, A., Newton, J. & Ormerod, S.J. (2013) Stable isotopes as indicators of wastewater effects on the macroinvertebrates of urban rivers. Hydrobiologia, 700, 231-244.
Mulholland, P.J., Helton, A.M., Poole, G.C., Hall, R.O., Jr., Hamilton, S.K., Peterson, B.J., Tank, J.L., Ashkenas, L.R., Cooper, L.W., Dahm, C.N., Dodds, W.K., Findlay, S.E.G., Gregory, S.V., Grimm, N.B., Johnson, S.L., McDowell, W.H., Meyer, J.L., Valett, H.M., Webster, J.R., Arango, C.P., Beaulieu, J.J., Bernot, M.J., Burgin, A.J., Crenshaw, C.L., Johnson, L.T., Niederlehner, B.R., O''Brien, J.M., Potter, J.D., Sheibley, R.W., Sobota, D.J. & Thomas, S.M. (2008) Stream denitrification across biomes and its response to anthropogenic nitrate loading. Nature, 452, 202-206.
Nelson, C.M. (1995) Male size, spawning pit size and female mate choice in a lekking cichlid fish. Animal Behaviour, 50, 1587-1599.
Olsen, D.A. & Townsend, C.R. (2003) Hyporheic community composition in a gravel-bed stream: influence of vertical hydrological exchange, sediment structure and physicochemistry. Freshwater Biology, 48, 1363-1378.
Ormond, R.F.G., Roberts, J.M. & Jan, R.Q. (1996) Behavioural differences in microhabitat use by damselfishes (Pomacentridae): Implications for reef fish biodiversity. Journal of Experimental Marine Biology and Ecology, 202, 85-95.
Ou, C.D., Li, Y.G. & Cheng, T.J. (1983) The influence of distribution of ground water level and ground water pressure on the foundation engineering in Taipei Basin. Journal of the Chinese Institute of Civil and Hydraulic Engineering, 10, 89-102. (in Chinese)
Owen, G., Moretti, M. & Alfaro, P. (2011) Recognising triggers for soft-sediment deformation: Current understanding and future directions. Sedimentary Geology, 235, 133-140.
Paul, M.J. & Meyer, J.L. (2001) Streams in the urban landscape. Annual Review of Ecology and Systematics, 32, 333-365.
Peng, T.R., Chen, C.T., Wang, W.H. & Chen, C.P. (2012) The assessment of spring pits in urban rivers for ecological restoration. NSC 100-2627-B-005-001. National Science Council, ROC. (in Chinese)
Phillips, D.L. & Gregg, J.W. (2003) Source partitioning using stable isotopes: coping with too many sources. Oecologia, 136, 261-269.
Pinnegar, J.K. & Polunin, N.V.C. (1999) Differential fractionation of δ13C and δ15N among fish tissues: implications for the study of trophic interactions. Functional Ecology, 13, 225-231.
Post, D.M. (2002) Using stable isotopes to estimate trophic position: Models, methods, and assumptions. Ecology, 83, 703-718.
Quirke, T.T. (1930) Spring pits, sedimentation phenomena. Journal of Geology, 38, 88-91.
ROCCOA (2013) Council of Agriculture, Executive Yuan, ROC http://kmweb.coa.gov.tw/subject/ct.asp?xItem=90781&ctNode=2428&mp=159&kpi=0. (in Chinese)
ROCCWB (2013) Central Weather Bureau, ROC http://www.cwb.gov.tw/. (in Chinese)
ROCEPA (1998) Environmental Protection Administration, Executive Yuan, ROC http://law.epa.gov.tw/zh-tw/laws/309417667.html. (in Chinese)
ROCEPA (2013) Environmental Protection Administration, Executive Yuan, ROC http://wq.epa.gov.tw/WQEPA/Code/Default.aspx. (in Chinese)
ROCWRA (2005a) Groundwater Quality Monitoring and Analysis for Taiwan Groundwater Monitoring Network. Water Resources Agency, Minstry of Economic Affairs, ROC. (in Chinese)
ROCWRA (2005b) Groundwater sources in Taiwan. Water Resources Agency, Minstry of Economic Affoirs, ROC. (in Chinese)
Schaedelin, F.C. & Taborsky, M. (2010) Female choice of a non-bodily ornament: an experimental study of cichlid sand craters in Cyathopharynx furcifer. Behavioral Ecology and Sociobiology, 64, 1437-1447.
Shamsudduha, M., Chandler, R.E., Taylor, R.G. & Ahmed, K.M. (2009) Recent trends in groundwater levels in a highly seasonal hydrological system: the Ganges-Brahmaputra-Meghna Delta. Hydrology and Earth System Sciences, 13, 2373-2385.
Smith, B.N. & Epstein, S. (1971) Two categories of 13C/12C ratios for higher plants. Plant Physiology, 47, 380-384.
Stanford, J.A. & Ward, J.V. (1993) An ecosystem perspective of alluvial rivers: connectivity and the hyporheic corridor. Journal of the North American Benthological Society, 12, 48-60.
Stubbington, R. (2012) The hyporheic zone as an invertebrate refuge: a review of variability in space, time, taxa and behaviour. Marine and Freshwater Research, 63, 293-311.
Tan, C.C. & Tung, C.P. (2008) Climate Change Impacts on Taipei Groundwater Recharge. Journal of Taiwan Agricultural Engineering, 54, 1-15. (in Chinese)
Tieszen, L.L., Boutton, T.W., Tesdahl, K.G. & Slade, N.A. (1983) Fraction and turnover of stable carbon isotopes in animal-tissues: Implication for δ13C analysis of diet. Oecologia, 57, 32-37.
Tomlinson, M. & Boulton, A.J. (2010) Ecology and management of subsurface groundwater dependent ecosystems in Australia - a review. Marine and Freshwater Research, 61, 936-949.
Tran-Duy, A., Schrama, J.W., van Dam, A.A. & Verreth, J.A.J. (2008) Effects of oxygen concentration and body weight on maximum feed intake, growth and hematological parameters of Nile tilapia, Oreochromis niloticus. Aquaculture, 275, 152-162.
USEPA (2006) United States Environmental Protection Agency http://www.epa.gov/wed/pages/models/stableIsotopes/isotopes.htm.
Valett, H.M., Fisher, S.G., Grimm, N.B. & Camill, P. (1994) Vertical hydrologic exchange and ecological stability of a desert stream ecosystem. Ecology, 75, 548-560.
Vander Zanden, M.J. & Rasmussen, J.B. (2001) Variation in δ15N and δ13C trophic fractionation: implications for aquatic food web studies. Limnology and Oceanography, 46, 2061-2066.
Vidon, P.G.F. & Hill, A.R. (2004) Landscape controls on the hydrology of stream riparian zones. Journal of Hydrology, 292, 210-228.
Von Gunten, H.R., Karametaxas, G., Krahenbuhl, U., Kuslys, M., Giovanoli, R., Hoehn, E. & Keil, R. (1991) Seasonal biogeochemical cycles in riverborne groundwater. Geochimica Et Cosmochimica Acta, 55, 3597-3609.
Walsh, C.J., Roy, A.H., Feminella, J.W., Cottingham, P.D., Groffman, P.M. & Morgan II, R.P. (2005) The urban stream syndrome: current knowledge and the search for a cure. Journal of the North American Benthological Society, 24, 706-723.
Ward, S., Arthington, A.H. & Pusey, B.J. (1995) The effects of a chronic application of chlorpyrifos on the macroinvertebrate fauna in an outdoor artificial stream system - species responses. Ecotoxicology and Environmental Safety, 30, 2-23.
Waska, H. & Kim, G. (2011) Submarine groundwater discharge (SGD) as a main nutrient source for benthic and water-column primary production in a large intertidal environment of the Yellow Sea. Journal of Sea Research, 65, 103-113.
Whitman, R.L. & Clark, W.J. (1982) Availability of dissolved oxygen in interstitial waters of a sandy creek. Hydrobiologia, 92, 651-658.
Winemiller, K.O., Hoeinghaus, D.J., Pease, A.A., Esselman, P.C., Honeycutt, R.L., Gbanaador, D., Carrera, E. & Payne, J. (2011) Stable isotope analysis reveals food web structure and watershed impacts along the fluvial gradient of a mesoamerican coastal river. River Research and Applications, 27, 791-803.
Wondzell, S.M. (2011) The role of the hyporheic zone across stream networks. Hydrological Processes, 25, 3525-3532.
Wyatt, K.H., Hauer, F.R. & Pessoney, G.F. (2008) Benthic algal response to hyporheic-surface water exchange in an alluvial river. Hydrobiologia, 607, 151-161.
Yoneyama, T., Okada, H. & Ando, S. (2010) Seasonal variations in natural 13C abundances in C3 and C4 plants collected in Thailand and the Philippines. Soil Science and Plant Nutrition, 56, 422-426.
Zarnetske, J.P., Haggerty, R., Wondzell, S.M. & Baker, M.A. (2011) Dynamics of nitrate production and removal as a function of residence time in the hyporheic zone. Journal of Geophysical Research-Biogeosciences, 116, G01025.
Zengeya, T.A., Booth, A.J., Bastos, A.D.S. & Chimimba, C.T. (2011) Trophic interrelationships between the exotic Nile tilapia, Oreochromis niloticus and indigenous tilapiine cichlids in a subtropical African river system (Limpopo River, South Africa). Environmental Biology of Fishes, 92, 479-489.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top