跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.213) 您好!臺灣時間:2025/11/08 12:55
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳伊蓉
研究生(外文):Yi-Rung Chen
論文名稱:水稻醛糖還原酶與癒傷組織芽體再生關係之研究
論文名稱(外文):Study on the Relationship Between Aldose Reductase and Shoot Regeneration in Rice Callus
指導教授:黃文理黃文理引用關係
指導教授(外文):Wen-Lii Huang
學位類別:碩士
校院名稱:國立嘉義大學
系所名稱:農藝學系研究所
學門:農業科學學門
學類:一般農業學類
論文種類:學術論文
論文出版年:2011
畢業學年度:99
語文別:中文
論文頁數:63
中文關鍵詞:醛糖還原酶芽體再生
外文關鍵詞:Aldose Reductaseshoots regeneration
相關次數:
  • 被引用被引用:0
  • 點閱點閱:326
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
滲透壓處理有助於水稻癒傷組織誘導體胚形成,並發育為芽體,相關機制仍不清楚,誘導過程中可能牽涉許多基因的調控。本論文目的即是要探討主要在水稻胚部表現且受ABA及不同逆境誘導之Aldose Reductase 基因 (OsARs),在滲透壓逆境誘導水稻癒傷組織再生植株過程中,可能扮演的角色。本研究以水稻台農67號(TNG67; OsAR5 野生型)、OsAR5過量表現轉殖系(OxAR5),及OsAR5 T-DNA插入突變系(KoAR5)未熟胚為材料,分別於N6D2基礎培養基中添加不同濃度sorbitol(0、0.3M、0.6M),分別以N6D2S0、N6D2S3及N6D2S6表示,觀察癒傷組織誘導情形與移至N6K4N2再生培養基後,植株再生情形。此外,也利用反轉錄酶聚合酶連鎖反應(RT-PCR)分析培養過程中5個OsARs之基因表現,並進一步以OsAR5多株抗體(polyclonal antibody)進行酵素免疫定位分析。試驗結果顯示三種水稻材料,會隨著滲透壓處理濃度的提高,癒傷組織誘導率、鮮重、及水分含量均會顯著下降,尤其是KoAR5,除生長受阻外,癒傷組織褐化率大幅提高,顯示OsAR5與滲透壓逆境下細胞之生長有關。此外,TNG67與OxAR5會隨著高濃度sorbitol處理顯著提高植株再生率(再生率分別為13%與26%),而KoAR5則完全沒有植株再生,顯示OsAR5與滲透壓誘導之水稻植株再生有密切相關。RT-PCR結果顯示5個OsARs基因均可在水稻癒傷組織中偵測到,不過以OsAR1與OsAR2表現量較為明顯,唯兩者的表現較不受滲透壓誘導,反之,除了在KoAR5細胞中偵測不到OsAR5表現外,sorbitol處理可提高TNG67與OxAR5中OsAR5之表現。進一步由免疫組織化學分析結果顯示,在癒傷組織誘導與植株再生初期,在表皮(epidermis)或細胞外圍組織(peripheral layer)、原生質濃密的細胞以及管胞分子(tracheary element),可觀察到OsAR5之分佈。上述結果均顯示OsAR5與滲透壓誘導之水稻癒傷組織植株再生能力有關,推測可能與其影響醣醇之生合成與降低細胞之氧化逆境傷害(褐化)有關。本論文是第一篇探討AR與植物生長與分化有關之研究,值得進一步深入研究,以釐清其可能扮演之角色。
It’s well known that osmotic stress can induce somatic embryogenesis and further shoot regeneration in rice callus. The mechanisms of totipotency are less understood so far even though plentiful research has been discussed with respect to cell differentiation. The purpose of this study was explored the possible role of Aldose Reductase gene (OsARs), which is subjected to ABA and stresses regulation, during callus induction and shoot regeneration in rice. The immature embryos from three genotypes of rice relevant to OsAR5, Tainung 67 (TNG67; OsAR5 wild-type), OsAR5 overexpression transgenic lines (OxAR5), and OsAR5 T-DNA insertion mutant (KoAR5) were used in present study. The callus were derived from N6D2 (N6 basal medium containing 2 mgL-1 2,4-D) induction medium supplemented with different concentration of sorbitol (0, 0.3M, 0.6M), represented as N6D2S0, N6D2S3, and N6D2S6, respectively. It showed the callus induction rate, fresh weight, and water content were decreased significantly accompany with sorbitol concentration in all genotypes. In KoAR5 has the highest browning rate than the others. Besides, the 14-days-old of callus were transferred to N6K4N2 (N6 basal medium containing 4 mgL-1 kinetin and 2 mgL-1 NAA) regeneration medium. The result showed that has no plantlets regenerated from TNG67 in N6D2S0 and N6D2S3 treatment. It can be increased to 13% in N6D2S6 treatment. Besides, the shoot regeneration frequency in N6D2S3 and N6D2S6 from OxAR5 enhanced to 13% and 26% respectively. In opposite, all three treatments in KoAR5 have no shoot regenerated. It suggested that the expression of OsAR5 is relevant to shoot regeneration in rice callus.
The reverse transcriptase polymerase chain reaction (RT-PCR) analysis and immunohistochemical localization of OsARs were further determined. The result showed that five OsARs genes can be detected in rice callus especially OsAR1 and OsAR2. The expression, except of OsAR5 is up-regulated by osmotic stress in TNG67 and OxAR5, the others seem have no significant difference no matter of with / without sorbitol treatment. In addition, it cannot detect any expression of OsAR5 in KoAR5 either callus induction or regeneration stage. According to the immunohistochemical analysis, the OsARs can be observed in the epidermis, peripheral layer, and tracheary elements during callus induction and shoot regeneration. The regenerable callus from N6D2S6 in TNG67 has more obviously distribution of OsARs.
The result is consistent with our previous study that shoot regeneration frequency is increased significantly by osmotic stress treatment in rice callus. We suggested that OsAR5 is closely related to shoot regeneration induced by high concentration of sorbitol treatment. It may have roles on detoxification of reactive aldehyde compounds and osmotic adjustment under osmotic stress treatment. This is the first study to mention the correlation between plant differentiation and AR. More morphological, physiological, and gene expression analysis is necessary to clarify the possible role of OsARs during shoot regeneration in rice callus under osmotic stress treatment.

內容......................................................................................................頁次
中文摘要..................................................................................................Ι
英文摘要................................................................................................III
謝誌...........................................................................................................V
目錄.........................................................................................................VI
表目錄....................................................................................................VII
圖目錄.....................................................................................................IX
一、前言....................................................................................................1
二、前人研究............................................................................................3
三、材料與方法.......................................................................................11
四、結果....................................................................................................25
五、討論....................................................................................................31
六、參考文獻............................................................................................35
附錄一......................................................................................................61
附錄二…………………………………………………………….….…62
附錄三………………………………………………………………..…63


李佳蕙。1997。滲透壓逆境下水稻癒合組織內生indole-3-acetic acid 與abscisic acid含量變化與植株再生間之關係。國立臺灣大學農藝學研究所博士論文。
林威至、李彥妮、羅正宗、吳志文、洪傳揚、黃文理。2008。受逆境調控之水稻醛糖還原酶基因之表現。作物、環境與生物資訊5:171-179。
林威至。2009。受逆境調控之水稻醛糖還原酶基因之表現。國立嘉義大學農學研究所碩士論文。
黃文理。1998。滲透壓誘導水稻癒合組織植株再生過程中碳水化合物代謝之研究。國立臺灣大學農藝學研究所博士論文。
Barreto, R., J. Nieto-Sotelo and G. I. Cassab. 2010. Influence of plant growth regulators and water stress on ramet induction, rosette engrossment, and fructan accumulation in Agave tequilana Weber var. Azul. Plant Cell Tissue Organ Cult. 103:93-101.
Bartels, D. and D. Nelson. 1994. Approaches to improve stress tolerance using molecular genetics. Plant Cell Environ. 17: 659-667.
Bartels, D., K. Engelhardt, R. Roncarati, K. Schneider, M. Rotter and F. Salamini. 1991. An ABA and GA modulated gene expressed in the barley embryo encodes an aldose reductase related protein. EMBO J. 10: 1037-1043.
Centeno, M. L., R. Rodríguez, B. Berros and A. Rodríguez. 1997. Endogenous hormonal content and somatic embryogenic capacity of Corylus avellana L. cotyledons. Plant Cell Rep. 17:139-144.
Charriére, F., B. Sotta, E. Miginiac and G. Hahne. 1999. Induction of adventitious shoots or somatic embryos on in vitro cultured zygotic embryos of Helianthus annuus: variation of endogenous hormone levels. Plant Physiol. Biochem. 37:751-757.
Chu, Q. R. and T. P. Croughan. 1990. Genetics of plant regeneration in immature panicle culture of rice. Crop Sci. 30: 1194-1197.
Etienne, H., P. Montoro, N. Michaux-Ferriere and M. P. Carron. 1993. Effects of desiccation, medium osmolarity and abscisic acid on the maturation of Hevea brasiliensis somatic embryos. J. Exp. Bot. 44:1613-1619.
Fehér, A., T. P. Pasternak and D. Dudits. 2003. Transition of somatic plant cells to an embryogenic state. Plant Cell Tissue Organ Cult. 74:201-228.
Feng, J.C., X. M. Yu, X. L. Shang, J. D. Li and Y. X. Wu. 2010. Factors influencing efficiency of shoot regeneration in Ziziphus jujube Mill.‘Huizao’. Plant Cell Tissue Organ Cult. 101:111-117.
Fernando, S. C. and C. K. A. Gamage. 2000. Abscisic acid induced somatic embryogenesis in immature embryo explants of coconut (Cocos nucifera L.). Plant Sci. 151:193-198.
García-Martín, G., J. A. Manzanera and M. E. González-Benito. 2005. Effect of exogenous ABA on embryo maturation and quantification of endogenous levels of ABA and IAA in Quercus suber somatic embryos. Plant Cell Tissue Organ Cult. 80:171-177.
Geng, P., H. La, H. Wang and E. J. C. Stevens. 2008. Effect of sorbitol concentration on regeneration of embroygenic calli in upland rice varieties (Oryza sativa L.). Plant Cell Tissue Organ Cult. 92: 303-313.
George, E. F., M. A. Hall and G. J. D. Klerk. 2008. Plant propagation by tissue culture. Volume 1: The background. 3rd edition. Springer, Netherlands.
Hegedüs, A., S. Erdei, T. Janda, E. Tóth, G. Horváth and D. Dudits. 2004. Transgenic tobacco plant overproducing alfalfa aldose/ aldehyde reductase show higher tolerance to low temperature and cadmium stress. Plant Sci.166:1329-1333.
Hoque, E. M. and J. W. Mansfield. 2004. Effect of genotype and explants age on callus induction and subsequent plant regeneration from root-derived callus of indica rice genotypes. Plant Cell Tissue Organ Cult. 78: 217-223.
Huang, W. L. and L. F. Liu .2002. Carbohydrate metabolism in rice during callus induction and shoot regeneration induced by osmotic stress. Bot. Bull. Acad. Sin. 43: 107-113
Huang, W. L., Y. C. Tsung and L. F. Liu. 2002. Osmotic stress promotes shoot regeneration in immature embryo-derived callus of rice (Oryza sativa L.). J. Agric. Assoc. China 3(1): 76-86.
Huang, W. L., C. H. Lee and Y. R. Chen. 2011. Levels of endogenous abscisic acid and indole-3-acetic acid influence shoot organogenesis in callus cultures of rice subjected to osmotic stress. Plant Cell Tissue Organ Cult. In press.
Jeffery, J. and H. Jornvall. 1983. Enzyme relationships in a sorbitol pathway that bypasses glycolysis and pentose phosphates in glucose metabolism. Proc. Natl. Acad. Sci. USA. 80: 901-905.
Jiang, H., J. Chen, X. L. Gao, J . Wan, P. R. Wang, X. D. Wang and Z. J. Xu. 2006. Effect of ABA on rice callus and development of somatic embryo and plant regeneration. Acta Agron Sin 32:1379-1383.
Kikuchi, A., N. Sanuki, K. Higashi, T. Koshiba and H. Kamada. 2006. Abscisic acid and stress treatment are essential for the acquisition of embryogenic competence by carrot somatic cells. Planta 223:637-645.
Lee, S. P. and T. H. H. Chen. 1993. Molecular cloning of abscisic acid-responsive mRNAs expressed during the induction of freezing tolerance in bromegrass (Bromus inermis Leyss) suspension culture. Plant Physiol.101: 11089-1096.
Li, B. and M. E. Foley. 1995. Cloning and characterization of differentially expressed genes in imbibed dormant and after ripened Avena Fatua embryos. Plant Mol. Biol. 29: 823-831.
Lutts, S., J. M. Kinet and J. Bouharmont. 1999. Improvement of rice callus regeneration in the presence of NaCl. Plant Cell Tissue Organ Cult. 57: 3-11.
Malik, M. R., F. Wang, J. M. Dirpaul, N. Zhou, P. L. Polowick, A. M. R. Ferrie and J. E. Krochko. 2007. Transcript profiling and identification of molecular markers for early microspore embryogenesis in Brassica napus. Plant Physiol. 144: 134-154.
Marashin, S. F., W. D. Priester, H. P. Spaink and M. Wang. 2005. Androgenic switch: an example of plant embryogenesis form the male gametophyte perspective. J. Exp. Bot. 56: 1711-1726.
Nishimura, C., Y. Matsuura, Y. Kolai, T. Akera, D. Carper, N. Morhana, C. Lyons and G. Flynn. 1990. Cloning and expression of human aldose reductase. J. Biol. Chem. 265: 9788-9792.
Oberschall, A., M. Deák, K. Török, L. Sass, I. Vass, I. Kovács, A. Fehér, D. Dudits and G. V. Horváth. 2000. A novel aldose/aldehyde reductase protects transgenic plants against lipid peroxidation under chemical and drought stresses. Plant J. 24: 437-446.
Petrash, J. M. 2004. All in the family: aldose reductase and closely related aldo-keto reductases. CMLS. 61:737-749.
Rittner, H. L., V. Hafner, P. A. Klimiuk, L. I. Szweda, J. J. Goronzy, C. M. Weyand. 1999. Aldose reductase functions as a detoxification system for lipid peroxidation products in vasculitis. J. Clin. Invest. 103: 1007-1013.
Roncarati, R. F. Salamini and D. Bartels. 1995. An aldose reductase homologous gene from barley: regulation and function. Plant J. 7: 809-822.
Silva, T. D. 2010. Indica rice anther culture: can the impasse be surpassed? Plant Cell Tissue Organ Cult. 100:1-11.
Sree, K. B., C. S. V. Rahendrakumar and A. R. Reddy. 2000. Aldose reductase in rice (Oryza sativa L.): stress response and developmental specificity. Plant Sci. 160: 149-157.
Sun, Y. L. and S. K. Hong. 2010. Effects of plant growth regulators and L-glutamic acid on shoot organogenesis in the halophyte Leymus chinensis (Trin.). Plant Cell Tissue Organ Cult. 100:317-328.
Tari, I., G. Kiss, A. K. Deér, J. Csiszár, L. Erdei, Á. Gallé, K. Gémes, F. Horváth, P. Poór, Á. Szepesi and L. M. Simon. 2010. Salicylic acid increased aldose reductase activity and sorbitol accumulation in tomato plants under salt stress. Biol. Plant. 54: 677-683.
Turóczy, Z., P. Kis, K. Török, M. Cserháti, Á. Lendvai, D. Dudits and G. V. Horváth. 2011. Overproduction of a rice aldo-keto reductase increases oxidative and heat stress tolerance by malondialdehyde and methylglyoxal detoxification. Plant Mol. Biol. 75: 399-412.
Veeranagamallaiah, G., G. S. Ranganayakulu, M. Thippeswamy, M. Sivakumar, K. E. Reedy, M. randuranfaiah, V. Sridevi and C. Sudhakar. 2009. Aldose reductase expresstion contributes in sorbitol accumulation an 4-hydroxynon-2-enal detocification in two foxtail millet (Setaria italic L.) cultivars with different salt stress tolerance. Plant Growth Regul. 59: 137-143.
Wani, S. H., G. S. Sanghera and S. S. Gosal. 2011. An efficient and reproducible method for regeneration of whole plants from mature seeds of a high yielding indica rice (Oryza sativa L.) variety PAU 201. New Biotechnol. 28: 418-422.
Zhao, C. X., Z. Mukhtar, C. A. Jaleel and M. M. Azooz. 2009. Effect of physical desiccation on plant regeneration efficiency in rice (Oryza sativa L.) variety super Basmati. J. Plant Physiol. 166: 1568-1575.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top