跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.41) 您好!臺灣時間:2025/09/01 13:22
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:李建鋒
研究生(外文):Jian-Feng Li
論文名稱:具銥錯合物之高效率白光有機發光二極體(OLED)的研究
論文名稱(外文):An Investigation of High Efficiency White Organic Light-Emitting Diode (OLED) with Iridium Complexes
指導教授:橫山明聰黃國勝黃國勝引用關係
指導教授(外文):Meiso YokoyamaKao-Shing Hwang
學位類別:博士
校院名稱:國立中正大學
系所名稱:電機工程所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:英文
論文頁數:124
中文關鍵詞:銥錯合物對比度電洞注入有機發光二極體
外文關鍵詞:Organic light emitting diodeIridium complexesContrast ratioHole injection
相關次數:
  • 被引用被引用:0
  • 點閱點閱:556
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
白光有機發光二極體(White OLED)由於可應用於液晶顯示器(LCD)的背光源以及照明光源…等用途,因此極具有研究發展的必要與急迫性,包含它的發光特性、對比度、色純度都有極大的改良空間。因此,本論文將以白光OLED搭配銥(Ir)金屬複合物且結合緩衝層與抗反射層改善其光電特性,藉以完成高效率白光OLED元件的最佳組成結構設計與光電特性分析。
第一部份,本論文將先針對OLED的電洞注入特性進行分析與探討。首先本論文探討不同的ITO蝕刻方式進行分析與探討,由實驗結果發現利用雷射(Laser)蝕刻的OLED元件比傳統濕式(Wet)蝕刻具有較小的驅動電壓,然而雷射蝕刻的OLED元件發光特性卻變差,其原因乃由於利用雷射蝕刻的ITO圖樣在圖形邊界處會有一突起物導致高的電場存於邊界處,進而使OLED元件的發光特性及穩定性變差。接著本論文在電洞注入層(PEDOT:PSS)內加入奈米級二氧化鈦(TiO2)微粒藉由改善其光電特性,由實驗結果發現加入TiO2可使ITO與PEDOT:PSS層之間的能障降低,以致改善元件的光電特性,且改變發光頻譜的半高寬,此乃由於TiO2造成的光散射所致。繼續本論文創新的利用無機半導體材料硒化鋅(ZnSe)作為OLED的電洞注入(緩衝)層,實驗發現加入適當厚度的ZnSe可有效改善OLED的發光效率。當ZnSe緩衝層的厚度在7.5Å時,可獲得最高發光效率。
第二部份接著利用CuPc與TiOPc作為電子傳導層暨抗反射層進而改善OLED的對比度。實驗結果發現,加入CuPc與TiOPc作為電子傳導暨抗反射層可有效改善OLED的對比度約為2倍,而且在OLED元件的發光效率部分不但沒有因為抗反射層的損失,反而高於傳統元件。
最後,本論文探討具銥複合物之白光OLED的光電特性及其發光機制。由實驗結果發現良好的TPBI發光與Ir(ppy)3和Ir(piq)2(acac)的複合物及吸收頻譜重疊使得主體材料TPBI可以有效地將能量轉換給銥金屬複合物,進而得到高的發光效率。此外我們將具有銥金屬複合物的白光OLED加入ZnSe作為緩衝層以及CuPc與TiOPc作為電子傳導與抗反射層,藉由上述結構完成約2倍的高對比度之具有銥金屬複合物的白光OLED。
Owing to the urgent marketing requirement in LCD backlight and illumination light sources fabricated by white organic light emitting diode (OLED), more studies engaged in the luminescent performance, driving voltage, contrast and color purity of white OLED are still needed. Therefore, the main purpose of this doctoral thesis is to improve the optoelectronic properties of white OLED with iridium complexes and accomplish the optimal design for fabricating the structured white OLED as well as its optoelectronic characteristics analyses.
We reported an investigation of the hole injection properties of organic light-emitting diodes. The effect of laser and wet etching methods of ITO substrates on the optoelectronic properties of OLEDs was investigated. We found that the OLED with a laser-etched ITO substrate has a lower driving voltage than that with a wet-etched ITO substrate. However, a laser-etched ITO substrate worsens the luminance of an OLED. This lower luminance is attributed to the shoulder at ITO/glass fringe, which is responsible for a high local electric field. Besides, OLEDs with a light scattering layer are proposed and their optoelectronic characteristics have been investigated. TiO2 was doped into the PEDOT:PSS layer to as a light scattering layer. The TiO2 could act as a buffer to decrease the barrier high between ITO and PEDOT:PSS interface. On the other hand, high efficiency OLEDs with a ZnSe semiconductor layer as hole-injection semiconductor buffer has been fabricated. The device with a 7.5 Å thickness semiconductor buffer layer has the best power efficiency.
Moreover, we also investigated an high contrast ratio and high power efficiency OLEDs using dual electron transporting layer of copper phthalocyanine (CuPc)/ titanium oxide phthalocyanine (TiOPc) as an anti-reflection layer. The contrast ratio of the device with a CuPc / TiOPc anti-reflection layer is about double and the power efficiency higher than that of a conventional device without the anti-reflection layer.
Finally, we completely discuss the photoelectronic characteristics and possible emission mechanisms of a WOLED configured with blue fluorescence and phosphorescent iridium complexes proposed as well. Evidence indicates that the good energy overlap between the absorption spectrum of Ir(ppy)3 and Ir(piq)2(acac) and the emission spectrum of TPBI results in an effective energy transfer from TPBI to Ir(ppy)3 and Ir(piq)2(acac). In addition, the WOLED with iridium complexes comprising a ZnSe film as a buffer layer and a dual electron transporting layer of CuPc/TiOPc as an anti-reflection layer has been fabricated. Evidenced shows that holes and electrons can be injected from the electrodes to the emission layer via ZnSe and CuPc/TiOPc layer, respectively, which enhances the electron-hole recombination. Additionally, contrast ratio is enhanced by a factor of 2 owing to the use of a CuPc/TiOPc anti-reflection layer.
致謝 (Acknowledgment) I
中文摘要 II
Abstract IV
Contents VI
Figure Captions IX
Table Captions XV
Chapter 1 Introduction 1
1-1 History of Organic Light Emitting Diodes 1
1-2 Motivation 5
1-3 Organization of This Thesis 6
Chapter 2 Basic Concepts and Experimental Procedure 8
2-1 Electroluminescence in Organic Materials 8
2-2 Charge Carrier Injection and Transporting 9
2-3 Effects of Doping 13
2-4 Emission Mechanisms of Organic Materials 14
2-5 Experimental Procedure 16
2-5-1 ITO Substrate Cleaning and patterning 16
2-5-2 Fabrication of Organic Light Emitting Diodes 18
2-5-3 Measurements and Tests 18
Chapter 3 An Investigation of the Hole Injection Properties of Organic Light-Emitting Diodes 20
3-1 Effect of Laser-Etched Indium Tin Oxide on Optoelectrical Properties of Organic Light-Emitting Diodes 20
3-1-1 Introduction 20
3-1-2 Experiments 21
3-1-3 Results and discussion 23
3-1-4 Summary 25
3-2 Effects of Light Scattering Layer on Outcoupling Efficiency in Organic Light Emitting Diodes 26
3-2-1 Introduction 26
3-2-2 Experimental 28
3-2-3 Results and Discussion 29
3-2-4 Summary 32
3-3 Enhanced Power Efficiency by insertion of semiconductor buffer layer in Organic Light Emitting Diodes 33
3-3-1 Introduction 33
3-3-2 Experiments 35
3-3-3 Results and discussion 36
3-3-4 Summary 38
Chapter 4 Enhancing the Contrast and Power Efficiency of Organic Light Emitting Diodes using CuPc/TiOPc as an Anti-reflection Layer 39
4-1 Introduction 39
4-2 Experimental details 41
4-3 Results and discussion 42
4-4 Summary 46
Chapter 5 High Efficiency White Organic Light-Emitting Diode with Iridium Complexes 47
5-1 Full-Wavelength White Organic Light-Emitting Diodes with Blue Fluorescence and Phosphorescent Iridium Complexes 47
5-1-1 Introduction 47
5-1-2 Experimental 49
5-1-3 Results and discussion 50
5-1-4 Summary 52
5-2 Enhancement on the Efficiency and Contrast of Phosphorescent White Organic Light-Emitting Diodes 53
5-2-1 Introduction 53
5-2-2 Experimental 54
5-2-3 Results and Discussion 55
5-2-4 Summary 57
Chapter 6 Conclusions and Future Work 58
6-1 Conclusions 58
6-2 Future Work 59
References 60
Publications 118
Patents 123
Biography 124
[1].C.W. Tang and S.A. VanSlyke, Appl. Phys. Lett., 51, 913(1987).
[2].C.W. Tang and S.A. VanSlyke, J. Appl. Phys., 65, 3610 (1989).
[3].C.Y. Lee et al., Phys. Rev. E 67, 046605 (2003).
[4].S.Z. Deng, K. Wang, J. Chen, Y.Q. Zhang, and N.S. Xu, J. Vac. Sci. Technol. B 21, 523 (2003).
[5].S.O. Kim, J. Vac. Sci. Technol. B 21, 233 (2003).
[6].T.J. Vink, A.R. Balkenende, R.G. Verbeek, H.A.M. van Hal, and S.T. de Zwart, Appl. Phys. Lett. 80, 2216 (2002).
[7].Y.C. Lan, Y. Hu, T.L. Lin, F.Y. Chuang, J.H. Tsai, C.C. Lee, and W.C. Wang, Jpn. J. Appl. Phys., Part 1 41, 657 (2002).
[8].Y. Iwamoto and Y. Iimura, Jpn. J. Appl. Phys., Part 2 41, L1383 (2002).
[9].T.Y. Yoon, J.H. Park, J.S. Sim, and S.D. Lee, Appl. Phys. Lett. 81, 2361 (2002).
[10].T. Tsujimura and A. Makita, J. Vac. Sci. Technol. B 20, 1907 (2002).
[11].M. Pope, H. Kallmann, and P. Magnante, J. Chem. Phys. 38, 2042 (1963).
[12].W. helfrich and W.G. Schneider, Phys. Rev. Lett. 140, 229 (1965).
[13].J.N. Bardsley, “The global flat panel display industry 2003,” in A In-Depth Overview and Roadmap, M. R. Pinnel, Ed. San Jose, CA: U.S. Display Consortium, 2003.
[14].Y.M. Kim, Y.W. Park, J.H. Choi, B.K. Ju, J.H. Jung, and J.K. Kim, Appl. Phys. Lett. 90, 033506 (2007).
[15].G. Cheng, Y. Zhang, Y. Zhao, Y. Lin, C. Ruan, S. Liu, T. Fei, Y. Ma, and Y. Cheng, Appl. Phys. Lett. 89, 043504 (2006).
[16].H. Kanno, N.C. Giebink, Y. Sun, and S.R. Forrest, Appl. Phys. Lett. 89, 023503 (2006).
[17].Y. Li, A. Rizzo, M. Mazzeo, L. Carbone, L. Manna, R. Cingolani, and G. Gigli, J. Appl. Phys. 97, 113501 (2005).
[18].Y. Shao and Y. Yang, Appl. Phys. Lett. 86, 073510 (2005).
[19].G. Cheng, Y. Zhao, Y. Zhang, S. Liu, F. He, H. Zhang, and Y. Ma, Appl. Phys. Lett. 84, 4457 (2004).
[20].T. Shiga, H. Fujikawa, and Y. Taga, J. Appl. Phys. 93, 19 (2003).
[21].J. Cao, X. Liu, M.A. Khan, W.Q. Zhu, X.Y. Jiang, Z.L. Zhang, and S.H. Xu. Curr. Appl. Phys., 7, 300 (2007).
[22].Y.K. Jang, D.E. Kim, W.S. Kim, B.S. Kim, O.K. Kwon, B.J. Lee, and Y.S. Kwon, Thin Soild Films, 515, 5075 (2007).
[23].J. Kalinowski, “Organic Light-Emitting Diodes Principles, characteristics, and Processes” Marcel Dekker, Now York (2005).
[24].J.M. Moon, J.H. Bae, J.A. Jeong, S.W. Jeong, N.J. Park, H.K. Kim, J.W. Kang, J.J. Kim, and M.S. Yi, Appl. Phys. Lett. 90, 163516 (2007).
[25].S. H. Kim, J. Jang, and J.Y. Lee, Appl. Phys. Lett. 89, 253501 (2006).
[26].C.A. Di, G. Yu, Y. Liu, X. Xu, Y. Song, and D. Zhu, Appl. Phys. Lett. 89, 033502 (2006).
[27].J.Y. Lee, Appl. Phys. Lett. 88, 073512 (2006).
[28].N. Koch, S. Duhm, J.P. Rabe, A. Vollmer, and R.L. Johnson, Phys. Rev. Lett. 95, 237601 (2005).
[29].K. Hong, S.Y. Kim, W.K. Kim, and J.L. Lee, Electrochem. Solid-State Lett. 10, H85 (2007).
[30].Y. Li, D.Q. Zhang, L. Duan, R. Zhang, L.D. Wang, and Y. Qiu, Appl. Phys. Lett. 90, 012119 (2007).
[31].Y. Li, D. Zhang, L. Duan, R. Zhang, L. Wang, J. Qiao, and Y. Qiu, Jpn. J. Appl. Phys., Part 2 45, L1253 (2006).
[32].J.H. Cho, H.S. Lee, Y. Jang, Y. Lee, S.K. Kwon, J. Jang, and K. Cho, Appl. Phys. Lett. 89, 083508 (2006).
[33].H.W. Choi, S.Y. Kim, W.K. Kim, and J.L. Lee, Appl. Phys. Lett. 87, 082102 (2005).
[34].R. Banerjee, S. Ray, N. Basu, A.K. Batabyal, and A.K. Barua, J. Appl. Phys. 62, 912 (1987).
[35].S. Major, S. Kumar, M. Bhatnagar, and K.L. Chopra, Appl. Phys. Lett. 49, 394 (1986).
[36].I.M. Chan, W.C. Cheng, and F.C. Hong, Appl. Phys. Lett. 80, 13 (2002).
[37].S. Tada, M. Ito, M. Hamagaki, M. Hori, and T. Goto, Jpn. J. Appl. Phys., Part 1 41, 6553 (2002).
[38].Y. Hashimoto, Y. Osato, M. Tanaka, M. Hamagaki, and T. Sakakibara, Jpn. J. Appl. Phys., Part 1 41, 2249 (2002).
[39].S.F. Chen, C.W. Wang, K.T. Kuo, and J.J. Wuu, Electron Devices and Materials Symposia, Symposium WD2, Dec. 12-13, 2001, National Sun Yat-Sen University, Kaohsiung, Taiwan, 341, (2001).
[40].H.B. Michaelson, J. Appl. Phys, 48, 4729 (1977).
[41].T.M. Brown, R.H. Friend, I.S. Millard, D.J. Lacey, J. H. Burroughes, and F. Cacialli, Appl. Phys. Lett., 79, 174 (2001).
[42].T.M. Brown and F. Cacialli, in IEE Proc. Optoelectron., 148, 74 (2001).
[43].T.M. Brown, R.H. Friend, I.S. Millard, D.J. Lacey, J.H. Burroughes, and F. Cacialli, Appl. Phys. Lett., 77, 3096 (2001).
[44].J. Yoon, J. Kim, T. Lee, and O. Park, Appl. Phys. Lett., 76, 2152 (2000).
[45].L.S. Hung, C.W. Tang, and M.G. Mason, Appl. Phys. Lett., 70, 152 (1997).
[46].M. Stobel, J. Staudigel, F. Steuber, J. Blassing, J. Simmerer, and A.Winnacker, Appl. Phys. Lett., 76, 115 (2000).
[47].S.E. Shaheen, G.E. Jabbour, M.M. Morelli, Y. Kawabe, B. Kippelen, N. Peyghambarian, M.F. Nabor, R. Schlaf, E.A. Mash, and N.R. Armstrong, J. Appl. Phys, 84, 2324 (1998).
[48].T. Mori, H. Fujikawa, S. Tokito, and Y. Yaga, Appl. Phys. Lett., 73, 2763 (1998).
[49].G.E. Jabbour, Y. Kawabe, S.E. Shaheen, J.F. Wang, M. M. Morelli, B. Kippelen, and N. Peyghambarian, Appl. Phys. Lett., 71, 1762 (1997).
[50].P. Piromreun, H. Oh, Y. Shen, G.G. Malliaras, J.C. Scott, and P.J. Brock, Appl. Phys. Lett., 77, 2403 (2000).
[51].G.E. Jabbour, B. Kippelen, N.R. Armstrong, and N. Peyghambarian, Appl. Phys. Lett., 73, 1185 (1998).
[52].H. Fujikawa, T. Mori, K. Noda, M. Ishii, S. Tokito, andY. Taga, J. of Lumin., 87, 1177 (2000).
[53].Y. Yamamoto, K. Yoshino, Y. Inuishi, J. Phys. Soc. Jpn. 47, 1887 (1979).
[54].G. Parthasarathy, C. Shen, A. Kahn, S.R. Forrest, J. Appl. Phys. 89, 4986 (2001).
[55].J. Kido, T. Matsumoto, Appl. Phys. Lett. 73, 2866 (1998).
[56].J. Endo, T. Matsumoto, J. Kido, Jpn. J. Appl. Phys. Part. 2, 41, L358 (2002).
[57].J. Staudigel, M. Stoessel, F. Steuber, J. Simmerer, J. Appl. Phys. 86, 3895 (1999).
[58].T. Förster, Discuss. Faraday Soc. 7, 27 (1959).
[59].N. J. Turro, Modern Molecular Photochemistry (Benjamin/Cummings, Menlo Park, CA, 1978).
[60].J.R. Lakowicz, Principles of Fluorescence Spectroscopy (Plenum, New York, 1983).
[61].K. Utsugi and S. Takanok, J. Electrochem. Soc. 139, 3610 (1992).
[62].H. Suzuki and S. Hoshino, J. Appl. Phys. 79, 8816 (1996).
[63].C.H. Chen, C.W. Tang, J. Shi, and K.P. Klubek, Thin Solid Films, 363, 327 (2000).
[64].V. Bulovic, A. Shoustikov, M.A. Baldo, E. Bose, V.G. Kozlov, M.E. Thompson, and S.R. Forrest, Chem. Phys. Lett. 287, 455 (1998).
[65].Z.Y. Xie, L.S. Hung, and S.T. Lee, Appl. Phys. Lett. 79, 1048 (2001).
[66].E. Gilbert, T. Tsutsui, and Saito, J. Appl. Phys., 79, 8808 (1996).
[67].A.A. Shoustikov, Y. You, and M.E. Thompson, IEEE J. Sel. Top. Quamtum Electronics, 4, 3 (1998).
[68].J. Kalinowski, G. Giro, M. Cocchi, V. Fattori, and P. Di Marco, Appl. Phys. Lett. 76, 2352 (2000).
[69].G. Peter and H. Bassler, Chem. Phys. 49, 9 (1980).
[70].A. Gilbert and J. Baggott, “Essentials of molecular photochemistry” Blackwell Scientific Publications (1991).
[71].J.W. Kang, W.I. Jeong, J.J. Kim, H.K. Kim, D.G. Kim, and G.H. Lee, Electrochem. Solid-State Lett. 10, J75 (2007).
[72].Y.H. Tak, K.B. Kim, H.G. Park, K.H. Lee and J.R. Lee, Thin Solid Films, 411, 12 (2002).
[73].T. Satoh, H. Fujikawa, and Y. Taga, Appl. Phys. Lett. 87, 143503 (2005).
[74].J. Rhee and H.H. Lee, Appl. Phys. Lett. 84, 4165 (2002).
[75].M. Hoheisel, A. Mitwalsky, and C. Mortzek, Phys. Status Solid A 123, 461 (1991).
[76].M. Inoue, T. Matsuoka, Y. Fujita, and A. Abe, Jpn. J. Appl. Phys. 28, 274 (1989).
[77].Y. Okamoto, Y. Uno, and Y. Hirao, Proc. SPIE Int. Soc. Opt. Eng. 4830, 40 (2003).
[78].R. Tanaka, T. Takaoka, H. Mizukami, T. Arai, and Y. Iwai, Proc. SPIE Int. Soc. Opt. Eng. 5063, 370 (2003).
[79].M. Takai, D. Bollmann, and K. Haberger, Appl. Phys. Lett. 64, 2560 (1994).
[80].H. Antoniadis, J.N. Miller, D.B. Roitman, and I.H. Cambell, IEEE Tran. On Elec. Devices 44, 1289 (1997).
[81].I.G. Hill and A. Kahn, J. Appl. Phys. 86, 2116 (1999).
[82].C. Ganzoring and M. Fujihira, Appl. Phys. Lett. 77, 4211 (2000).
[83].H.C. Lin, J.F. Ying, T. Yamanka, S.J. Feng, and C.R. Helms, J. Vac. Sci. Technol. A 15, 790 (1997).
[84].D.R. Lamb, Electrical Conduction Mechanisms in Thin Insulating Films, Methuen, London, 1967.
[85].V. Konchits and C.K. Kim, Wear 232, 31 (1999).
[86].T. Sameshima and K. Ozaki, Thin Soild Films 383, 107 (2001).
[87].Y. Sato, S. Ichinosawa, and H. Kanai, IEEE J. Sel. Top. Quantum. Electron. 4, 40 (1998).
[88].T. Mori, T. Mitsuoka, M. Ishii, H. Fujikawa, and Y. Taga, Appl. Phys. Lett. 80, 3895 (2002).
[89].S.R. Forrest, D.D.C. Bradey and M.E. Thompson: Adv. Mater. 15, 1043 (2003).
[90].J.F. Li, S.F. Chen, S.H. Su, K.S. Hwang, M.Yokoyama, J. Electrochem. Soc., 153, H195 (2006).
[91].J. Kido and Y. Iizumi, Appl. Phys. Lett., 73, 4303 (2001).
[92].M.A. Baldo, D.F. O’Brien, Y. You, A. Shoustikov, S. Sibley, M. E. Thompson, and S. R. Forrest, Nature (London) 395, 151 (1998).
[93].M.A. Baldo, M.E. Thompson, and S.R. Forrest, Nature (London) 403, 750 (2000).
[94].C. Adachi, M.A. Baldo, M.E. Thompson, and S.R. Forrest, J. Appl.Phys. 90, 5048 (2001).
[95].M.H. Lu and J.C. Sturm, Appl. Phys. Lett. 78, 1927 (2001).
[96].J.S. Kim, P.K.H. Ho, N.C. Greenham, and R.H. Friend, J. Appl. Phys. 88, 1073 (2000).
[97].A. Chutinan, M. Fujita, W. Kunishi, T. Ueno, K. Ishihara, T. Asano, and S. Noda, Ext. Abstr. Jpn. Soc. Appl. Phys. Relat. Soc. 50, 1408 (2003).
[98].N.C. Greenham, R.H. Friend, and D.D.C. Bradley, Adv. Mater, 6, 491 (1994).
[99].B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics Wiley, (New York, 1991).
[100].L. J. Rothberg, J. Mater. Res. 11, 3174 (1996).
[101].C.F. Madigan, M.H. Lu, and J.C. Sturm, Appl. Phys. Lett., 76, 1650 (2000).
[102].I. Schnitzer, E. Yablonovitch, C. Caneau, T.J. Gmitter, and A. Scherer, Appl. Phys. Lett., 63, 2174 (1993).
[103].J. J. Shiang and A. R. Duggal, J. of Appl. Phys., 95, 2880 (2004).
[104].G. Gu, D.Z. Garbuzov, P.E. Burrows, S. Venkatesh, S.R. Forrest, and M.E. Thompson, Opt. Lett., 22, 396 (1994).
[105].T. Yamasaki, K. Sumioka, and T. Tsutsui, Appl. Phys. Lett., 76, 1243 (2000).
[106].Y.J. Lee, S.H. Kim, J. Huh, G.H. Kim, Y.H. Lee, S.H. Cho, Y.C. Kim and Y.R. Do, Appl. Phys. Lett., 82, 3779 (2003).
[107].S. Möller and S.R. Forrest, Appl. Phys. Lett., 91, 3324 (2002).
[108].A. Kitamura, S. Naka, H. Okada, and H. Onnagawa, Jap. J. Appl. Phys., 44, 613 (2005).
[109].M. Segal, M. Singh, K. Rivoire, S. Difley, T. Van Voorhis, and M. A. Baldo, Nature Mater. 6, 374 (2007).
[110].L.S. Hung and C. H. Chen, Mater. Sci. Eng., R. 39, 143 (2002).
[111].H. Vestweber, W. Ries, Synth. Met. 91, 181 (1997).
[112].S.A. VanSlyke, C.H. Chen, C.W. Tang, Appl. Phys. Lett. 69, 2160 (1996).
[113].W.P. Hu, K. Manabe, T. Furukawa, M. Matsumura, Appl. Phys. Lett. 80, 2640 (2002).
[114].Y.L. Shen, D.B. Jacobs, G.G. Malliaras, G.M. Koley, G. Spencer, A. Ioannidis, Adv. Mater. 13, 1234 (2001).
[115].R.A. Hatton, M.R. Willis, M.A. Chesters, D. Briggs, J. Mater. Chem. 13, 722 (2003).
[116].C.F. Qiu, Z.L. Xie, H.Y. Chen, M. Wong, H.S. Kwok, J. Appl. Phys. 93, 3253 (2003).
[117].Z.B. Deng, X.M. Ding, S.T. Lee, W.A. Gambling, Appl. Phys. Appl. Phys. Lett. 74, 2227 (1999).
[118].H.J. Jiang, Y. Zhou, B.S. Ooi, Y.W. Chen, T. Wee, Y.L. Lam, J.S. Huang, S.Y. Liu, Thin Solid Films 363, 25 (2000).
[119].C.F. Qiu, H.Y. Chen, Z.L. Xie, M. Wong, H.S. Kwok, Appl. Phys. Lett. 80, 3485 (2002).
[120].Y. Kurosaka, N. Tada, Y. Ohmori, K. Yoshino, Synth. Met. 102, 1101 (1999).
[121].S.D. Wang, M.K. Fung, S.L. Lai, S.W. Tong, C.S. Lee, S.T. Lee, H.J. Zhang, S.N. Bao, J Appl. Phys. 94, 169 (2003).
[122].M.Y. Chan, S.L. Lai, M.K. Fung, S.W. Tong, C.S. Lee, S.T. Lee, Appl. Phys. Lett. 82, 1784 (2003).
[123].Y.Q. Zhan, Z.H. Xiong, H.Z. Shi, S.T. Zhang, Z. Xu, G.Y. Zhong, J. He, J.M. hao, Z.J. Wang, E. Obbard, H.J. Ding, X.J. Wang, X.M. Ding, W. Huang, X.Y. Hou, Appl. Phys. Lett. 83, 1656 (2003).
[124].F. Bai, Z.B. Deng, X. Gao, X.H. Chen, Q. Cai, Synth. Met. 137 (2003) 1139.
[125].S.R. Forrest, Chem. Rev. 97, 1793 (1997).
[126].M. Matsumura, Y. Jinde, T. Akai, and T. Kimura, Jpn. J. Appl. Phys., Part1 35, 5735 (1996).
[127].D.M. Cheng, F.Y. Ma, and X.Y. Liu, Optics and Laser Technology 39,720 (2007).
[128].W.X. Li, J. Hagen, R. Jones, J. Heikenfeld, and A.J. Steckl, Solid State Electronics 51, 500 (2007).
[129].X.Y. Jiang, Z.L. Zhang, W.Q. Zhu, and S.H. Xu, Displays 27,161 (2006).
[130].R. Bathelt, D. Buchhauser, C. Gärditz, R. Paetzold, and P. Wellmann, Organic Electronics 8, 293 (2007).
[131].D. Tanaka, H. Sasabe, Y.J. Li, S.J. Su, T. Takeda, and J. Kido, Jpn. J. Appl. Phys., Part 2 46, L10 (2007).
[132].M. K. Mathai, V. E. Choong, S. A. Choulis, B. Krummacher, and F. So, Appl. Phys. Lett. 88, 243512 (2006).
[133].K. Okumoto, H. Kanno, Y. Hamada, H. Takahashi, and K Shibata, Appl. Phys. Lett. 89, 013502 (2006).
[134].S. Tokito, T. Iijima, T. Tsuzuki, and F. Sato, Appl. Phys. Lett. 83, 2459 (2003).
[135].K. Okumoto, H. Kanno, Y. Hamada, H. Takahashi, and K. Shibata, J. Appl. Phys. 100, 044507 (2006).
[136].L.S. Hung and J. Madathil, Adv. Mater. 13, 1787 (2001).
[137].P. Vonlanthen, E. Felder, L. Degiorgi, H. R. Ott, D. P. Young, A. D. Bianchi, and Z. Fisk, Phys. Rev. B 62, 10076 (2000).
[138].V.G. Aleshin, J. Less-Common Met. 67, 173 (1979).
[139].Z.Y. Xie and L.S. Hung, Appl. Phys. Lett. 84, 1207 (2004).
[140].K.C. Lau, W.F. Xie, H.Y. Sun, C.S. Lee, S.T. Lee, Appl. Phys. Lett. 88, 083507 (2006).
[141].J.H. Lee, C.C. Liao, P.J. Hu, and Y. Chang, Synth. Met. 144, 279 (2004).
[142].S.H. Li, H. Liem, C.W. Chen, E.H. Wu, Z. Xu, and Y, Yang, Appl. Phys. Lett. 86, 143514 (2005).
[143].Y.C. Zhou, L.L. Ma, J. Zhou, X.D. Gao, H. R. Wu, X. M. Ding, and X. Y. Hou, Appl. Phys. Lett. 88, 233505 (2006).
[144].L.S. Hung and M.G. Mason, Appl. Phys. Lett. 78, 3732 (2001).
[145].T. Saito, W. Sisk, T. Kobayashi, S. Suzuki, and T. Iwayanagi, J. Phys. Chem. 97, 263 (1993).
[146].Y.S. Jung, J.Y. Seo, D.W. Lee, and D.Y. Jeon, Thin Solid Films 445, 63 (2003).
[147].J. Ni, T. Tano, Y. Ichino, T. Hanada, T. Kamata, Jpn. J. Appl. Phys. 40, L948 (2001).
[148].M.M. El-Nahass, F.S. Bahabri, and S.R. Al-Harbi, Egypt. J. Sol. 24, 11 (2001).
[149].Y.M. Wang, F. Teng, Q.C. Zhou, and Y.S. Wang, Appl. Surf. Sci. 252, 2355 (2006).
[150].G.T. Chen, S.H. Su, and M. Yokoyama, J. Electrochem. Soc. 153, H68 (2006).
[151].X.J. Wang, J.M. Zhao, Y.C. Zhou, X.Z. Wang, S.T. Zhang, Y.Q. Zhan, Z. Xu, H. J. Ding, G.Y. Zhong, H.Z. Shi, Z.H. Xiong, Y. Liu, Z.J. Wang, E.G. Obbard, and X.M. Ding, J. Appl. Phys. 95, 3828 (2004).
[152].S.T. Lee, X.Y. Hou, M.G. Mason, and C.W. Tang, Appl. Phys. Lett. 72, 1593 (1998).
[153].D. Qin and Y. Tao, Appl. Phys. Lett. 86, 113507 (2005).
[154].Y. Zhang, G. Cheng, Y. Zhao, J. Hou, and S. Liu, Appl. Phys. Lett. 86, 011112 (2005).
[155].Z.L. Zhang, X.Y. Jiang, W.Q. Zhu, X.Y. Zheng, Y.Z. Wu, and S.H. Xu, Synth. Met., 137, 1141 (2003).
[156].J. Kido, H. Shionoya, and K. Nagai, Appl. Phys. Lett. 67, 2281 (1995).
[157].C.W. Ko, Y.T. Tao, Appl. Phys. Lett. 79, 4234 (2001).
[158].G. Li, J. Shinar, Appl. Phys. Lett. 81, 1738 (2003).
[159].U. Scherf, and E. J. W. List, Adv. Mater. 14, 477 (2002).
[160].S. Setayesh, A. C. Grimsdale, T. Weil, V. Enkelmann, K. Mullen, F. Meghdadi, E.J.W. List, and G. Leising, J. Am. Chem. Soc. 123, 946 (2001).
[161].C.C. Wu, Y.T. Lin, K.T. Wong, and Y.Y. Chien, Adv. Mater. 16, 61 (2004).
[162].Y.S. Huang, J.H. Jou, W.K. Weng and J.M. Liu, Appl. Phys. Lett., 80, 2782 (2002).
[163].R.J. Holmes, S.R. Forrest, Org. Electron. 2, 37 (2001).
[164].Y.T. Tao, C.W. Ko, and E. Balasubramaniam, Thin Solid Films, 417, 61 (2002).
[165].M.A. Baldo, C. Adachi, and S.R. Forrest, Phys. Rev., B 62, 10967 (2000).
[166].D.L. Dexter, J. Chem. Phys., 21, 836 (1953).
[167].D.F. O''Brien, C. Giebeler, R.B. Fletcher, A.J. Cadby, L.C. Palilis, D.G. Lidzey, P.A. Lane, D.D.C. Bradley, and W. Blau, Synthetic Metals, 116, 379 (2001).
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. 5.陳秀清:〈孟浩然的評傳及其詩〉,《藝術學報》第2期(1967年6月),頁1-14。
2. 6.黃永武::〈孟浩然詩欣賞〉,《自由青年》第44卷第4期(1970年10月),頁75-82。
3. 8.菊韻:〈孟浩然的詩〉,《今日中國》第36期(1974年4月),頁110-121。
4. 9.林宗霖:〈孟浩然的天才未被歷史浪潮埋沒〉,《藝文誌》第136期(1977年1月),頁57-59。
5. 12.簡錦松:〈孟浩然與王維的詩風--以用事觀點論二家五律〉,《中外文學》第8卷第1期(1979年6月),頁29。
6. 13.張健:〈孟浩然與孟郊的詠僧學佛詩〉,《中外文學》第6卷第11期(1978年4月),頁4-23。
7. 18.黃東成:〈揚州千古屬詩人--讀孟浩然「宿桐廬江寄廣陵舊遊」尋蹤記〉,《幼獅文藝》第556卷(2000年4月),頁10-15。
8. 19.錢仲聯,徐永端:〈翰墨名詩--晚泊潯陽望廬山‧孟浩然〉,《書友》第158卷(2000年5月),頁23-25。
9. 20.簡恩定:〈論孟浩然的清曠詩風〉,《空大人文學報》第11卷(2002年12月),頁1-13。
10. 21.吳叔樺:〈自然沖淡之極致--孟浩然「過故人莊」賞析〉,《中國語文》第94卷第3期(2004年3月),頁54-62。
11. 22.方杰:〈孟浩然在哪兒停船﹖--用<富春山居圖>導讀<宿建德江>〉,《經典與人文》第4卷(2004年7月),頁2。
12. 23.林淑貞:〈從〈與諸公登峴山〉看孟浩然的境遇感〉,《國文天地》第21期第9卷(2006年2月),頁41-45。
13. 2.許天治︰〈中國古典詩中「雕紅刻綠」的賞析研究(中)–初探紅綠色彩在詩詞中的視覺意象〉,《藝術評論》,第4 期(1992 年10 月),頁44。
14. 10.曾啟雄︰〈「青色」 色彩再論〉,《藝術家》,第253 期(1996年6月),頁380–383。
15. 15.許金枝:〈劉宋詩人用韻研究〉,《中正嶺學術研究集刊》第17卷(1998年6月),頁77-117。