跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.122) 您好!臺灣時間:2026/01/06 12:47
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:洪紹育
研究生(外文):Shao-Yu Hung
論文名稱:受弧形邊界拘束之彈性樑的變形及穩定性分析
論文名稱(外文):Deformation and Stability of an ElasticaConstrained by Curved Surfaces
指導教授:陳振山陳振山引用關係
指導教授(外文):Jen-San Chen
口試委員:周元昉莊嘉揚
口試日期:2011-06-07
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:機械工程學研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2011
畢業學年度:99
語文別:中文
論文頁數:76
中文關鍵詞:彈性樑變形穩定性弧形邊界
外文關鍵詞:ElasticaDeformationStabilityCurved Surface
相關次數:
  • 被引用被引用:0
  • 點閱點閱:367
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本文中我們考慮在底部平面兩端夾持(clamped-clamped)的彈性樑(elastica)在受到頂部牆面側向壓縮後的變形及穩定性。我們考慮三種頂部牆面:分別為凹面(concave)、凸面(convex)及平面(plane)。首先建立受壓縮彈性樑的變形軌跡圖,接著由振動法決定各式變形的穩定性。當頂部牆面以半靜態方式(quasi-statically)壓縮時,我們架設實驗驗證理論上預測的變形演變。當頂部牆面為平面時,free fold(與牆面發生點接觸前的變形)恰接觸到牆面時,壓縮外力會減少到零。當頂部牆面不再是平面時,此現象就不見得存在。當頂部牆面不再是平面,線接觸變形的多樣性會受到破壞。當頂部牆面為凹面時,頂面不會發生二次挫曲,反而是底部平面兩端的線接觸持續變長。當頂部牆面為凸面不會發生頂部線接觸。

In this paper we consider the deformation and stability of a clamped-clamped elastica resting on a bottom plane and pressed by a top wall laterally. Three types of top walls are considered; they are concave, convex, and plane surfaces. Deformation maps of the pressed elastica are first constructed. The stability of various deformation patterns is determined via a vibration method. The theoretical predictions on the deformation evolution when the top wall presses quasi-statically are verified experimentally. In the case of plane top wall, the external pressing force reduces to zero whenever the free fold of a previous deformation starts to touch the wall. In the case when the top wall is not a plane, this is in general no longer true. The multiplicity of line-contact deformations in the case of plane top wall is destroyed when the top wall is curved. No secondary buckling will occur when the top wall is concave. Instead, line contact on the sides of the bottom plane will develop. In the case when the top wall is convex, no line contact on the top wall is possible.

第一章 導論 1
第二章 理論模型 4
第三章 彈性樑的靜態變形 5
3.1 在兩接觸面皆為點接觸 6
3.2 頂部弧面為線接觸 8
第四章 振動和穩定性分析 11
4.1 在兩接觸面皆為點接觸 11
4.2 邊界條件 15
4.3 接觸條件 16
4.4 與 座標間的轉換 17
4.5 求解方法 18
4.6 頂面為線接觸 21
第五章 彈性樑的變形軌跡圖 22
5.1 凹面(Concave wall) 22
5.2 凸面(Convex wall) 25
5.3 與平面的比較 27
5.3.1 頂面為平面的變形軌跡圖 27
5.3.2 多樣性的消失 28
5.3.3 基頻(Fundamental natural frequencies) 30
5.3.4 變形分類 30
第六章 結論 32
參考文獻 34
附表目錄 36
附圖目錄 41
附錄目錄 60


[1]Feodosyev, V.I., 1977. Selected Problems and Questions in Strength of Materials. Mir, Moscow. Translated from the Russian by M. Konyaeva.
[2]Vaillette, D.P., Adams, G.G., 1983. An elastic beam contained in a frictionless channel. ASME Journal of Applied Mechanics, 50, 693–694.
[3]Adams, G.G., Benson, R.C., 1986. Postbuckling of an elastic plate in a rigid channel. International Journal of Mechanical Sciences, 28, 153–162.
[4]Adan, N., Sheinman, I., Altus, E., 1994. Post-buckling behavior of beams under contact constraints. ASME Journal of Applied Mechanics 61, 764–772.
[5]Domokos, G.., Holmes, P., Royce, B., 1997. Constrained Euler buckling. Journal of Nonlinear Science, 7, 281-314.
[6]Holmes, P., Domokos, G., Schmitt, J., Szeberenyi, I., 1999. Constrained Euler buckling: an interplay of computation and analysis. Computer Methods in Applied Mechanics and Engineering, 170, 175-207.
[7]Chai, H., 2002. On the post-buckling behavior of bilaterally constrained plates. International Journal of Solids and Structures, 39, 2911-2926.
[8]Ro, W.-C., Chen, J.-S., and Hung, S.-Y., 2010. Vibration and stability of a constrained elastica with variable length. International Journal of Solids and Structures, 47, 2143-2154.
[9]Roman, B., Pocheau, A., 1999. Buckling cascade of thin plates: Forms, constraints, and similarity. Europhysics letters, 46, 602-608.
[10]Roman, B., Pocheau, A., 2002. Postbuckling of bilaterally constrained rectangular thin plates. Journal of the Mechanics and Physics of Solids, 50, 2379-2401.
[11]Wu, J., Juvkam-Wold, H.C., 1995. The effect of wellbore curvature on tubular buckling and lockup. ASME Journal of Energy Resources Technology, 117, 214-218.
[12]Kuru, E., Martinez, A., Miska, S., Qiu, W., 2000. The buckling behavior of pipes and its influence on the axial force transfer in directional wells. ASME Journal of Energy Resources Technology, 122, 129-135.
[13]Chen, J.-S., Li C.-W., 2007. Planar elastica inside a curved tube with clearance. International Journal of Solids and Structures, 44, 6173-6186.
[14]Lu, Z.-H., Chen, J.-S., 2008. Deformations of a clamped-clamped elastica inside a circular channel with clearance. International Journal of Solids and Structures, 45, 2470-2492.
[15]Chen, J.-S., Ro, W.-C., 2010. Deformations and stability of an elastica subjected to an off-axis point constraint. ASME Journal of Applied Mechanics, 77, 031006.
[16]Pocheau, A., Roman, B., 2004. Uniqueness of solutions for constrained Elastica. Physica D, 192, 161-186.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top