跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.54) 您好!臺灣時間:2026/01/11 17:21
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:王俊欽
研究生(外文):WANG, JYUN-CIN
論文名稱:受衝擊循環之液態黏彈阻尼隔震器振動分析
論文名稱(外文):Vibration Analysis of the liquid Viscoelastic Damping Isolator with Cycling loading
指導教授:黃柏文黃柏文引用關係周卓明周卓明引用關係曾仲葛
指導教授(外文):HUANG,BO-WENZHOU,ZHUO-MINGZENG,ZHONG-GE
口試委員:周卓明黃柏文曾仲葛光灼華邱能信
口試委員(外文):ZHOU,ZHUO-MINGHUANG,BO-WENZENG,ZHONG-GEGUANG,ZHUO-HUACIOU,NENG-SIN
口試日期:2014-06-27
學位類別:碩士
校院名稱:正修科技大學
系所名稱:機電工程研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2014
畢業學年度:102
語文別:中文
論文頁數:76
中文關鍵詞:隔震器阻尼動態特性
外文關鍵詞:isolatordampingdynamic characteristics
相關次數:
  • 被引用被引用:0
  • 點閱點閱:418
  • 評分評分:
  • 下載下載:48
  • 收藏至我的研究室書目清單書目收藏:0
台灣位在地震活躍區,東臨環太平洋火山板塊,西臨菲律賓海底板塊。板塊頻繁地向西北碰撞歐亞板塊,因此地震頻繁。板塊碰撞前緣的斷層作用震源深度較淺,地震震度大且容易造成嚴重災情。2011年3月11日本福島發生規模9.0級大地震,雙葉郡的福島第一核電廠遭受侵襲。機組與電力網的連接受到嚴重損毀,只能倚賴柴油發電機驅動電子系統與冷卻系統。因地震產生的大海嘯淹沒緊急發電機室,損毀了緊急柴油發電機。核子反應爐因冷卻系統停止運作而過熱導致爐內氫氣爆炸。輻射外洩造成大範圍核災,更凸顯出核能發電廠地震防治之重要性。國內核能發電廠防震設備多數不足以應付強烈地震發生,因此核能發電廠的防震系統可說是擔任相當重要的角色。
本論文主要是研究探討阻尼隔震器於地震振動下之動態分析,利用電腦輔助設計軟體Solid Works來繪製出阻尼隔震器之3D立體模型,將建立完成之3D立體模型匯入有限元素分析軟體,並匯入阻尼隔震器之材料系數(楊氏係數、浦松比、密度、黏滯係數)至ANSYS Workbench中,進行有限元素分析求出自然振動頻率及其模態特性。並且模擬地震時所產生的振動觀察隔震器的減振效果。
關鍵字: 隔震器、阻尼、動態特性
Taiwan is situated in between two highly active tectonic plates, the Circum-Pacific Seismic Belt at the east and the Philippine Sea Plate at the west. The Philippine Sea Plate frequently collides with the Eurasian plate, causing intensive seismic activities. Seismic activities in this area are characterized by shallow hypocenter and high intensity and therefore large-scale devastations have been recorded throughout history. On March 11th 2011, a magnitude 9.0 earthquake hit Japan’s Fukushima region, and the nearby Fukushima Daiichi Nuclear Power Plant (Futaba District) was severely damaged. Irreversible damage on the power network, which was the main power source to the six boiling water reactors (BWR), left the power company no choice but to switch on the emergency diesel power generator in order to maintain the functions of the electronic and cooling systems. To make things worse, the earthquake triggered deadly tsunami. Gushing saltwater flooded the emergency power generator room and destroyed the emergency diesel power generator. The cooling systems were permanently shut down and, as a consequence, the nuclear reactors became overheated. Hydrogen exploded inside the reactors, causing release of radioactivity in massive scale. This incident brought the world to reexamine the safety of their nuclear plants, especially on the aspect of sustainability associated with earthquake. In the wake of the Fukushima earthquake, issues of nuclear safety resurfaced and gained wide attention in Taiwan. We found that the majority of the nuclear power plants in Taiwan have not been designed to sustain violent earthquake and therefore shock isolation systems for nuclear power plants emerged as a significant subject of research.

This dissertation presents a dynamic analysis on damping isolator under simulated earthquake vibration. Analysis was conducted using computer-aided design software Solid Works to produce a 3D model of the damping isolator, which was then imported into ANSYS Workbench, along with the material coefficients of the damping isolator (Young’s modulus, Poisson’s ratio and density), for finite element analysis. From the finite element analysis, we derived the natural vibration frequency and modal characteristics and made an observation on the effect of the damping isolator under a simulated earthquake. Statistics derived from the analyses were entered into a comparison to determine whether the designed damping isolator can effectively prevent damage to the power generator during earthquake.
Keywords: isolator, damping, dynamic characteristics
第1章 緒論...................................................................1
1.1研究動機..................................................................1
1.2研究目的..................................................................1
1.3隔震器簡介................................................................2
1.4文獻回顧..................................................................8
1.5論文大綱..................................................................12
第2章 有限元素分析............................................................16
2.1有限元素分析簡介...........................................................16
2.1.1ANSYS分析軟體介紹.......................................................16
2.2ANSYS有限元素分析流程......................................................17
第3章 阻尼隔震器動態分析.......................................................21
3.1阻尼隔震器衝擊動態分析架構...................................................21
3.2阻尼隔震器地震振動動態分析架構................................................22
第4章 結果與討論..............................................................26
4.1阻尼隔震器有限元素收斂性分析.................................................26
4.2有限元素阻尼隔震器模態分析...................................................28
4.3固體與液體阻尼液隔震器衝擊動態分析.............................................32
4.4液面高度影響之隔震器衝擊動態分析..............................................36
4.4.1阻尼隔震器受衝擊後時域比較.................................................39
4.5阻尼隔震器地震振動動態分析...................................................43
4.5.1垂直地震振動後時域反應....................................................44
4.5.2水平地震振動後時域反應....................................................47
4.6載重影響之隔震器振動動態分析.................................................49
4.7彈簧材料與K值影響之隔震器振動動態分析..........................................54
第5章 結論與建議..............................................................59
5.1結論.....................................................................59
5.2建議.....................................................................60
參考文獻.....................................................................61

【1】日本ADC株式會社產品「粘滞阻尼墙(Viscous Damping Wall, VDW)」,http://www.adc21.com/301_nensei.html.
【2】張富進,“談隔震系統”,台灣省土木技師公會 技師報,285期,2006。
【3】游士賢,“簡易隔震器於貴重儀器設備之應用”, 逢甲大學土木工程學系碩士論文,2005。
【4】S. Valliappan, K. Qi, “Finite element analysis of a smart damper for seismic structural control,” Computers and Structures, 81 (2003) 1009–1017.
【5】翁明傑,“改良式掣震型彈簧式避振器的性能評估與使用設計流程之研究”, 國立成功大學建築研究所碩士論文,2003。
【6】林谷屏,“橡膠層墊對結構系統隔震效應之研究”, 國立成功大學土木工程研究所碩士論文,2003。
【7】A. G. Chehab, M. Hesham El Naggar, “Response of block foundations to impact loads,” Journal of Sound and Vibration, 276 (2004) 293–310.
【8】廖健閔,“設備運用滑動摩擦增補阻尼器隔振研究”, 國立成功大學建築研究所,2004。
【9】R. Pan, J. Jiang, R.O. Buchal, “Design of an optimal shock-damping isolator with application to casters,” Journal of Sound and Vibration 289 (2006) 278–293.
【10】李永峰,“足尺寸液流阻尼器之研發”, 國立成功大學土木工程研究所博士論文,2006。
【11】楊詠超,“引擎排氣歧管固定鉗之電腦輔助疲勞分析”, 逢甲大學航太與系統工程學系碩士論文,2007。
【12】洪志鋒,“黏性阻尼器於隔震設計之效益探討”, 國立台灣科技大學營建工程系碩士學位論文,2007。
【13】陳文信,“黏滯性阻尼材料避震器之設計分析與測試”,逢甲大學土木工程學系碩士論文,2007。
【14】Y. S. Choun, M.K. Kim, “A Performance Assessment of a Base Isolation System for an Emergency Diesel Generator in,” Korea Atomic Energy Research Institute,2008.
【15】A.K. Samantaray,“Modeling and analysis of preloaded liquid spring/damper shock absorbers,” Simulation Modelling Practice and Theory, 17 (2009) 309–325.
【16】張簡嘉賞,“基於挫屈及摩擦機制之位移型抗震阻尼器的試驗研究” 國立交通大學土木工程學系博士班博士論文,2009。
【17】L. Liu, W. Shaob,“Design and Dynamic Response Analysis of Rail with Constrained Damped Dynamic Vibration Absorber,” Procedia Engineering, 15 ( 2011 ) 4983 – 4987.
【18】A. Alva,“Experimental and Finite Elements Analysis of a Tuned Mass Absorber for Vibration Isolation,” ARPN Journal of Engineering and Applied Sciences, ISSN 1819-6608,2011.
【19】L. Y. Lu, G. L. Lin, M. H. Shih, “An experimental study on a generalized Maxwell model for nonlinear viscoelastic dampers used in seismic isolation,”Engineering Structures, 34 (2012) 111–123
【20】柯有濂,“沖壓機之黏彈阻尼隔震器振動分析研究”,正修科技大學機電工程研究所碩士論文,2013。
【21】張建華,“微型壓電薄膜式泵浦動態特性分析”,正修科技大學機電工程研究所碩士論文,2012。
【22】龔皇光、黃柏文、陳鴻雄,ANSYS與電腦輔助工程分析(網路e化精簡版),全華科技圖書股份有限公司,2004。
【23】梁書豪,“腿骨動態特性之研究”,正修科技大學機電工程研究所, 2011。
【24】黃銘源,“人類腿骨之動態特性與衝擊分析”,正修科技大學機電工程研究所碩士論文,2012。
【25】A. Milecki, M. Hauke, “Application of magnetorheological fluid in industrial shock absorbers,” Mechanical Systems and Signal Processing , 28(2012)528–541.
【26】I. Saidi, E. F. Gad, J. L. Wilson, N. Haritos, “Development of passive viscoelastic damper to attenuate excessive floor vibrations,” Engineering Structures, 33 (2011) 3317–3328.
【27】Z. Chaofeng, Z. Zhisheng, Z. Qiuju, “Static and dynamic cyclic performance of a low-yield-strength steel shear panel damper,” Journal of Constructional Steel Research ,79 (2012) 195–203.
【28】吳俞慶,“液流阻尼器之結構控制分析”,國立成功大學土木工程研究所碩士論文,2011。
【29】蕭珮芳,“液流阻尼器在高科技廠房的減震應用”,國立成功大學土木工程研究所碩士論文,2005。
【30】陳柏宏,“運用向量式有限元素法於隔震橋梁之非線性動力分析”,國立中央大學土木工程學系碩士論文,2008。
【31】M. Y. Fakhouria, A. Igarashi, “Dynamic response control of multi-story structures by isolators with multiple plane sliding surfaces: A parametric study,” Engineering Structures, Vol. 34, pp. 81-94, 2012.
【32】翁正和,“高爾夫球桿動態特性與穩定性分析”,正修科技大學機電工程研究所碩士論文,2007。

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊