跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.0) 您好!臺灣時間:2025/11/26 12:24
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:白禮源
研究生(外文):Li-Yuan Bai
論文名稱:非傳統化學藥物治療惡性B淋巴球疾病:針對p38 MAPK, Akt 路徑或histone deacetylase的藥物機轉研究
論文名稱(外文):Treating B-cell lymphoid malignancies with non-conventional chemotherapeutic agents: study of compounds targeting p38 MAPK, Akt pathways or histone deacetylase
指導教授:邱昌芳邱昌芳引用關係
學位類別:博士
校院名稱:中國醫藥大學
系所名稱:臨床醫學研究所博士班
學門:醫藥衛生學門
學類:醫學學類
論文種類:學術論文
論文出版年:2011
畢業學年度:99
語文別:英文
論文頁數:97
中文關鍵詞:惡性淋巴球疾病骨髓瘤p38 MAPKAkt組蛋白去乙醯酶
外文關鍵詞:lymphoid malignancymyelomap38 MAPKAkthistone deacetylase
相關次數:
  • 被引用被引用:0
  • 點閱點閱:301
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
血液惡性疾病可以分為骨髓球性或淋巴球性,目前對於淋巴球性血液惡性疾病的標準治療方式為化學藥物治療加上單株抗體。雖然有部份淋巴球性惡性腫瘤的患者,例如瀰漫性大B細胞淋巴瘤,對於初始治療的效果不錯,但仍然有部份病人會因為腫瘤對化學藥物產生抗藥性而死亡,甚至有些病人在初始治療時就沒有效果。對於這些病人而言,其預後也非常不好,因此,如何增加淋巴球性惡性腫瘤的治療效果是一個重要課題。要克服此問題的一種方法是,研發具有與化學藥品不同作用機轉的藥物(另類路徑)來對抗癌細胞;另一個策略則是以此類藥物來增加癌細胞對化學藥物或其他藥品的敏感性。因此,我們假設作用在另類路徑的藥物本身就有抗淋巴球性腫瘤的效果,或者可以經由增加癌細胞對其他細胞毒殺藥物的敏感性來提高療效。在這裡,我們將由三個方向來驗證我們的假說。

實驗的第一部份證實OSU-DY7可以經由活化p38路徑而產生對慢性淋巴球性白血病或Burkitt淋巴瘤的療效。第二個部份證實一個組蛋白去乙醯酶的抑制劑(S)-HDAC42對多發性骨髓瘤的效果。最後我們用一個Akt路徑抑制劑OSU-03012增強imatinib對骨髓瘤細胞的毒殺作用,而此交互作用可能和AMP-活化蛋白激酶與STAT3路徑有關。因此我們的實驗證實,作用於p38 MAPK,Akt路徑或histone deacetylase的藥物可以用來治療淋巴球性血液惡性疾病。當然這方面的研究未來還需要更多實驗來檢視。


Hematological malignancies can be grouped as either myeloid or lymphoid disorders. The standard treatment strategy for lymphoid malignancies is chemotherapeutic agents, usually in combination with monoclonal antibodies which have introduced great impact on the clinical situation. Although certain subtypes of lymphoid malignancies, e.g. diffuse large B cell lymphoma, have good response to initial treatment, some of patients will succumb to the disease because of development of drug resistance. Still others are primarily refractory to initial therapy. The prognosis for these patients is dismal. This highlights the necessity of developing approaches to improve the therapeutic efficacy for lymphoid malignancies. One approach is to develop compounds that have anti-tumor effects with mechanism different from conventional chemotherapeutic agents. Another strategy to improve the therapeutic efficacy is to sensitize cancer cells to cytotoxic effect of other agents. We hypothesize that agents targeting alternative pathways are effective in treatment of lymphoid malignancies. These agents can exhibit anti-tumor efficacy either by themselves or by sensitizing cancer cells to other cytotoxic agents. For this sack, we validate our hypothesis through three approaches.

The first part demonstrates that OSU-DY7 induces cytotoxicity in chronic lymphocytic leukemia and Burkitt lymphoma through activating p38 mitogen-activated protein kinase pathway. The second part illustrates the effectiveness of a histone deacetylase inhibitor (S)-HDAC42 in multiple myeloma cells U266. The last part shows that OSU-03012, an Akt pathway inhibitor, sensitizes myeloma cells to imatinib mesylate via AMP-activated protein kinase and STAT3 pathways. Our study successfully proves the hypothesis that agents targeting p38 MAPK, Akt pathways or histone deacetylase are effective in treatment of lymphoid malignancies. Further studies are needed to shed more light on the road.


目 錄

中文摘要 (Abstract in Chinese) i
英文摘要 (Abstract in English) ii
致謝辭 (Acknowledgements) iv
目錄 (Table of contents) v
表目錄 (List of tables) viii
圖目錄 (List of figures) ix

第一章 研究動機與目的 (Chapter 1. Research Motivation and
Purpose) 1
1.1. Lymphoid malignancies 1
1.2. Treatment of lymphoid malignancies 1
1.3. Strategies to improve the therapeutic efficacy 2
1.4. Research hypothesis 2
1.5. Objective and approach 3

第二章 文獻回顧 (Chapter 2. Literature Review) 4
2.1. Chronic lymphocytic leukemia and Burkitt’s
lymphoma 4
2.2. Multiple myeloma 6
2.3. The difficulties we are facing with in managing patients with lymphoid malignancies 7
2.4. p38 MAPK 8
2.5. OSU-DY7 8
2.6. (S)-HDAC42 10
2.7. OSU-03012 11

第三章 測試p38 MAPK激活劑 OSU-DY7對淋巴球性白血病
及淋巴瘤的活性 (Testing the efficacy of a p38 MAPK activator OSU-DY7 in lymphocytic leukemia and lymphoma) 12
3.1. Introduction 12
3.2. Materials and Methods 13
3.3. Results 18
3.4. Discussion 26

第四章 以組織球蛋白去乙醯酶抑制劑 (S)-HDAC42來處理
多發性骨髓瘤細胞 (Chapter 4. Treating multiple myeloma with a novel histone deacetylase inhibitor (S)-HDAC42) 30
4.1. Introduction 30
4.2. Materials and Methods 30
4.3. Results 34
4.4. Discussion 36

第五章 以Akt路徑抑制劑OSU-03012來加強骨髓瘤細胞對
imatinib的敏感性 (Chapter 5. Improving the therapeutic efficacy by sensitizing myeloma cells to imatinib by an
Akt pathway inhibitor OSU-03012) 39
5.1. Introduction 39
5.2. Materials and Methods 40
5.3. Results 43
5.4. Discussion 45

第六章 結論與未來 (Chapter 6. Conclusion and prospective) 49

參考文獻 (References) 83


表目錄 (List of tables)
Table 1 IC50 values of OSU-DY7 in malignant lymphoid cell lines and primary B-CLL cells 51



圖目錄 (List of figures)

Figure 1 Compounds targeting alternative pathways other then chemotherapeutic agents maybe beneficial for lymphoid malignancies 52
Figure 2 The chemical structure of OSU-DY7 53
Figure 3 The chemical structures of (S)-HDAC42 and
suberoylanilide hydroxamic acid (SAHA) 54
Figure 4 The chemical structures of OSU-03012 55
Figure 5 The experiment flow chart of part I study (Testing the efficacy of a p38 MAPK activator OSU-DY7 in lymphocytic leukemia and lymphoma) 56
Figure 6 Cytotoxicity study of OSU-DY7 in B-lymphocytic cell lines and primary B CLL cells 57
Figure 7 OSU-DY7 induces cell morphological change in a
dose-dependent manner 58
Figure 8 OSU-DY7-mediated cytotoxicity is dependent on caspase activation and apoptosis 59
Figure 9 The effect of OSU-DY7 in pro- and anti-apoptotic protein expression in Raji and MEC-1 61
Figure 10 OSU-DY7 induces down regulation of phosphorylated
ERK1/2 and up regulation of phosphorylated p38 MAPK 62
Figure 11 OSU-DY7 induces phosphorylation of p38 MAPK 63
Figure 12 OSU-DY7-induced cytotoxicity is dependent on p38
MAPK activation 65
Figure 13 OSU-DY7-induced down regulation of BIRC5 protein
and mRNA transcription in p38 MAPK activation
dependent manner 67
Figure 14 Inhibition of ERK pathway has no effect on Raji cell survival 69
Figure 15 Quantitative polymerase chain reaction of cytokines in Raji cells treated with OSU-DY7 70
Figure 16 The proposed mechanism of OSU-DY7 mediated
cytotoxicity in CLL and Burkitt’s lymphoma 71
Figure 17 The experiment flow chart of part II study (Treating multiple myeloma U266 with a novel histone deacetylase inhibitor (S)-HDAC42) 72
Figure 18 Effects of (S)-HDAC42 on HDAC inhibition 73
Figure 19 Apoptotic assay of U266 cells treated with (S)-HDAC42 for 48 h 74
Figure 20 Western blot analysis of apoptotic pathway in U266 cells treated with (S)-HDAC42 for 48 h 75
Figure 21 Western blot analysis of Akt and NF-?羠 pathways and cell cycle related proteins in U266 cells treated with
(S)-HDAC42 for 48 h 76
Figure 22 The experiment flow chart of part III study (Improving the therapeutic efficacy by sensitizing myeloma cells to imatinib by an Akt pathway inhibitor OSU-03012) 78
Figure 23 OSU-03012 accentuates the cytotoxicity of imatinib
mesylate in U255 myeloma cells 79
Figure 24 Combinatorial effect of OSU-03012 and imatinib
mesylate on indicated molecules of signaling pathways 80
Figure 25 Western blotting analysis of time-course treatment with imatinib mesylate and OSU-03012 on U266 cells 81
Figure 26 Compounds targeting alternative pathways including p38 MAPK, histone deacetylase, AMPK and STAT3 are
beneficial for lymphoid malignancies 82


References
1.Jaffe ES, Harris NL, Stein H, Vardiman JW. Pathology and genetics of tumours of haematopoietic and lymphoid tissues. Lyon: International Agent for Research on Cancer (IARC) Press; 2001.
2.Cancer Registry Annual Report 2007, Taiwan. Bureau of Health Promotion, Department of Health, The Executive Yuan, Taiwan; 2010.
3.Dighiero G, Hamblin TJ. Chronic lymphocytic leukaemia. Lancet 2008;317:1017-29.
4.Montserrat E, Moreno C. Chronic lymphocytic leukaemia: a short overview. Ann Oncol 2008;19(suppl 7):vii320-5.
5.Richardson PG, Mitsiades C, Schlossman R, Munshi N, Anderson K. New drugs for myeloma. Oncologist 2007;12:664-89.
6.Smith EM, Boyd K, Davies FE. The potential role of epigenetic therapy in multiple myeloma. Br J Hematol 2009;148:702-13.
7.Pandiella A, Carvajal-Vergara X, Tabera S, Mateo G, Gutierrez N, San Miguel JF. Imatinib mesylate (STI571) inhibits multiple myeloma cell proliferation and potentiates the effect of common antimyeloma agents. Br J Haematol 2003;123:858-68.
8.Ocqueteau M, Orfao A, Garcia-Sanz R, Almeida J, Gonzalez M, San Miguel JF. Expression of the CD117 antigen (c-Kit) on normal and myelomatous plasma cells. Br J Haematol 1996;95:489-93.
9.Pruneri G, Ponzoni M, Ferreri AJ, Freschi M, Tresoldi M, Baldini L, Mattioli M, Agnelli L, Govi S, Mancuso P, Agazzi A, Bertolini F, Peccatori J, Bosari S, Gianelli U, Viale G, Neri A. The prevalence and clinical implications of c-kit expression in plasma cell myeloma. Histopathology 2006;48:529-35.
10.Lemoli RM, Fortuna A, Grande A, Gamberi B, Bonsi L, Fogli M, Amabile M, Cavo M, Ferrari S, Tura S. Expression and functional role of c-kit ligand (SCF) in human multiple myeloma cells. Br J Haematol 1994;88:760-9.
11.Reber L, Da Silva CA, Frossard N. Stem cell factor and its receptor c-Kit as targets for inflammatory diseases. Eur J Pharmacol 2006;533:327-40.
12.Sattler M, Salgia R. Targeting c-Kit mutations: basic science to novel therapies. Leuk Res 2004;28 Suppl 1:S11-20.
13.Montero JC, Lopez-Perez R, San Miguel JF, Pandiella A. Expression of c-Kit isoforms in multiple myeloma: differences in signaling and drug sensitivity. Haematologica 2008;93:851-9.
14.Tay K, Dunleavy K, Wilson WH. Novel agents for B-cell non-Hodgkin lymphoma: science and the promise. Blood Rev 2010;24:69-82.
15.Goy A, Younes A, McLaughlin P, Pro B, Romaguera JE, Hagemeister F, Fayad L, Dang NH, Samaniego F, Wang M, Broglio K, Samuels B, Gilles F, Sarris AH, Hart S, Trehu E, Schenkein D, Cabanillas F, Rodriguez AM. Phase II study of proteasome inhibitor bortezomib in relapsed or refractory B-cell non-Hodgkin’s lymphoma. J Clin Oncol. 2005;23:667-75.
16.Kennedy NJ, Cellurale C, Davis RJ. A radical role for p38 MAPK in tumor initiation. Cancer Cell 2007;11:101-3.
17.Han J, Sun P. The pathways to tumor suppression via route p38. Trends Biochem Sci 2007;32:364-71.
18.Hui L, Bakiri L, Stepniak E, Wagner EF. p38α: a suppressor of cell proliferation and tumorigenesis. Cell Cycle 2007;6:2429-33.
19.Nebreda AR, Porras A. p38 MAP kinases: beyond the stress response. Trends Biochem Sci 2000;25:257-60.
20.Ono K, Han J. The p38 signal transduction pathway: activation and function. Cell Signal 2000;12:1-13.
21.Dolado I, Swat A, Ajenjo N, De Vita G, Cuadrado A, Nebreda AR. p38α MAP kinase as a sensor of reactive oxygen species in tumorigenesis. Cancer Cell 2007;11:191-205.
22.Hui L, Bakiri L, Mairhorfer A, Schweifer N, Haslinger C, Kenner L, Komnenovic V, Scheuch H, Beug H, Wagner EF. p38α suppresses normal and cancer cell proliferation by antagonizing the JNK-c-Jun pathway. Nat Genet 2007;39:741-9.
23.Ambrosino C, Nebreda AR. Cell cycle regulation by p38 MAP kinase. Biol Cell 2001;93:47-51.
24.Puri PL, Wu Z, Zhang P, Wood LD, Bhakta KS, Han J, Feramisco JR, Karin M, Wang JY. Induction of terminal differentiation by constitutive activation of p38 MAP kinase in human rhabdomyosarcoma cells. Genes Dev 2000;14:574-84.
25.Wada T, Penninger JM. Mitogen-activated protein kinases in apoptosis regulation. Oncogene 2004;23:2838-49.
26.Bulavin DV, Fornace AJ Jr. p38 MAP kinase’s emerging role as a tumor suppressor. Adv Cancer Res 2004;92:95-118.
27.Deacon K, Mistry P, Chernoff J, Blank JL, Patel R. p38 mitogen-activated protein kinase mediates cell death and p21-activated kinase mediates cell survival during chemotherapeutic drug-induced mitotic arrest. Mol Biol Cell 2003;14:2071-87.
28.Losa JH, Parada Cobo C, Viniegra JG, Sanchez-Arevalo Lobo VJ, Ramon y Cajal S, Sanchez-Prieto R. Role of the p38 MAPK pathway in cisplatin-based therapy. Oncogene 2003;22:3998-4006.
29.Hallahan AR, Pritchard JI, Chandraratna RA, Ellenbogen RG, Geyer JR, Overland RP, Strand AD, Tapscott SJ, Olson JM. BMP-2 mediates retinoid-induced apoptosis in medulloblastoma cells through a paracrine effect. Nat Med 2003;9:1033-8.
30.Olson JM, Hallahan AR. p38 MAP kinase: a convergence point in cancer therapy. Trends Mol Med 2004;10:125-9.
31.Seo SK, Lee HC, Woo SH, Jin HO, Yoo DH, Lee SJ, An S, Choe TB, Park MJ, Hong SI, Park IC, Rhee CH. Sulindac-derived reactive oxygen species induce apoptosis of human multiple myeloma cells via p38 mitogen activated protein kinase-induced mitochondrial dysfunction. Apoptosis 2007;12:195-209.
32.Cai B, Xia Z. p38 MAP kinase mediates arsenite-induced apoptosis through FOXO3a activation and induction of Bim transcription. Apoptosis 2008;13:803-10.
33.Matsuda, S., Minowa, A., Suzuki, S. & Koyasu, S. Differential activation of c-Jun NH2-terminal kinase and p38 pathways during FTY720-induced apoptosis of T lymphocytes that is suppressed by the extracellular signal-regulated kinase pathway. J Immunol 1999;162:3321-6.
34.Ocio EM, Mateos MV, Maiso P, Pandiella A, San-Miguel JF. New drugs in multiple myeloma: mechanisms of action and phase I/II clinical findings. Lancet Oncol 2008;9:1157-65.
35.Ropero S, Esteller M. The role of histone deacetylases (HDACs) in human cancer. Mol Oncol 2007;1:19-25.
36.Marks PA, Rifkind RA, Richon VM, Breslow R, Miller T, Kelly WK. Histone deacetylases and cancer: causes and therapies. Nat Rev Cancer 2001;1:194-202.
37.Bolden JE, Peart MJ, Johnstone RW. Anticancer activities of histone deacetylase inhibitors. Nat Rev Drug Discov 2006;5:769-84.
38.Dokmanovic M, Marks PA. Prospects: histone deacetylase inhibitors. J Cell Biochem 2005;96:293-304.
39.Richon VM, Webb Y, Merger R, Sheppard T, Jursic B, Ngo L, Civoli F, Breslow R, Rifkind RA, Marks PA. Second generation hybrid polar compounds are potent inducers of transformed cell differentiation. Proc Natl Acad Sci USA 1996;93:5705-8.
40.Campbell RA, Sanchez E, Steinberg J, Shalitin D, Li ZW, Chen H, Berenson JR. Vorinostat enhances the antimyeloma effects of melphalan and bortezomib. Eur J Hematol 2009;84:201-11.
41.Siegel D, Hussein M, Belani C, Robert F, Galanis E, Richon VM, Garcia-Vargas J, Sanz-Rodriguez C, Rizvi S. Vorinostat in solid and hematologic malignancies. J Hematol Oncol 2009;2:31.
42.Richardson PG, Mitsiades CS, Colson K, Reilly E, McBride L, Chiao J, Sun L, Ricker JL, Rizvi S, Oerth C, Atkins B, Fearen I, Anderson KC, Siegel DS. Final results of a phase I trial of oral vorinostat (suberoylanilide hydroxamic acid, SAHA) in patients with advanced multiple myeloma. Leuk Lymphoma 2008;49:502-7.
43.Badros A, Burger AM, Philip S, Niesvizky R, Kolla SS, Goloubeva O, Harris C, Zwiebel J, Wright JJ, Espinoza-Delgado I, Baer MR, Holleran JL, Egorin MJ, Grant S. Phase I trial of vorinostat in combination with bortezomib for relapsed and refractory multiple myeloma. Clin Cancer Res 2009;15:5250-7.
44.Deleu S, Lemaire M, Arts J, Menu E, Van Valckenborgh E, King P, Vande Broek I, De Raeve H, Van Camp B, Croucher P, Vanderkerken K. The effects of JNJ-26481585, a novel hydroxamate-based histone deacetylase inhibitor, on the development of multiple myeloma in the 5T2MM and 5T33MM murine models. Leukemia 2009;23:1894-903.
45.Mandl-Weber S, Meinel FG, Jankowsky R, Oduncu F, Schmidmaier R, Baumann P. The novel inhibitor of histone deacetylase resminostat (RAS2410) inhibits proliferation and induces apoptosis in multiple myeloma (MM) cells. Br J Hematol 2010;149:518-28.
46.Feng R, Ma H, Hassig CA, Payne JE, Smith ND, Mapara MY, Hager JH, Lentzsch S. KD5170, a novel mercaptoketone-based histone deacetylase inhibitor, exerts antimyeloma effects by DNA damage and mitochondrial signaling. Mol Cancer Ther 2008;7:1494-505.
47.Kaiser M, Lamottke B, Mieth M, Jensen MR, Quadt C, Garcia-Echeverria C, Atadja P, Heider U, von Metzler I, Turkmen S, Sezer O. Synergistic action of the novel HSP90 inhibitor NVP-AUY922 with histone deacetylase inhibitors, melphalan, or doxorubicin in multiple myeloma. Eur J Hematol 2009;84:337-44.
48.Galli M, Salmoiraghi S, Golay J, Gozzini A, Crippa C, Pescosta N, Rambaldi A. A phase II multiple dose clinical trial of histone deacetylase inhibitor ITF2357 in patients with relapsed or progressive multiple myeloma. Ann Hematol 2010;89:185-90.
49.Kulp SK, Chen CS, Wang DS, Chen CY, Chen CS. Antitumor effects of a novel phenylbutyrate-based histone deacetylase inhibitors, (S)-HDAC-42, in prostate cancer. Clin Cancer Res 2006;12:5199-206.
50.Sargeant AM, Rengel RC, Kulp SK, Klein RD, Clinton SK, Wang YC, Chen CS. OSU-HDAC42, a histone deacetylase inhibitor, blocks prostate tumor progression in the transgenic adenocarcinoma of the mouse prostate model. Cancer Res 2008;68:3999-4009.
51.Yang YT, Balch C, Kulp SK, Mand MR, Nephew KP, Chen CS. A rationally designed histone deacetylase inhibitor with distinct antitumor activity against ovarian cancer. Neoplasia 2009;11:552-63.
52.Lu YS, Kashida Y, Kulp SK, Wang YC, Wang D, Hung JH, Tang M, Lin ZZ, Chen TJ, Cheng AL, Chen CS. Efficacy of a novel histone deacetylase inhibitor in murine models of hepatocellular carcinoma. Hepatology 2007;46:1119-30.
53.Chen CS, Weng SC, Tseng PH, Lin HP, Chen CS. Histone acetylation-independent effect of histone deacetylase inhibitors on Akt through the reshuffling of protein phosphatase 1 complexes. J Biol Chem 2005;280:38879-87.
54.Hsu AL, Ching TT, Wang DS, Song X, Rangnekar VM, Chen CS. The cyclooxygenase-2 inhibitor celecoxib induces apoptosis by blocking Akt activation in human prostate cancer cells independently of Bcl-2. J Biol Chem 2000;275:11397-403.
55.Song X, Lin HP, Johnson AJ, Tseng PH, Yang YT, Kulp SK, Chen CS. Cyclooxygenase-2, player or spectator in cyclooxygenase-2 inhibitor induced apoptosis in prostate cancer cells. J Natl Cancer Inst 2002;94:585-91.
56.Grosch S, Tegeder I, Niederberger E, Brautigam L, Geisslinger G. COX-2 independent induction of cell cycle arrest and apoptosis in colon cancer cells by the selective COX-2 inhibitor celecoxib. FASEB J 2001;15:2742-4.
57.Jendrossek V, Handrick R, Belka C. Celecoxib activates a novel mitochondrial apoptosis signaling pathway. FASEB J 2003;17:1547-9
58.Zhang S, Suvannasankha A, Crean CD, White VL, Johnson A, Chen CS, Farag SS. OSU-03012, a novel celecoxib derivative, is cytotoxic to myeloma cells and acts through multiple mechanisms. Clin Cancer Res 2007;13:4750-8.
59.Johnson AJ, Smith LL, Zhu J, Heerema NA, Jefferson S, Mone A, Grever M, Chen CS, Byrd JC. A novel celecoxib derivative, OSU03012, induces cytotoxicity in primary CLL cells and transformed B-cell lymphoma cell line via a caspase- and Bcl-2-independent mechanism. Blood 2005;105:2504-9.
60.McCubrey JA, Lahair MM, Franklin RA. OSU-03012 in the treatment of glioblastoma. Mol Pharmacol 2006;70:437-9.
61.Kucab JE, Lee C, Chen CS, Zhu J, Gilks CB, Cheang M, Huntsman D, Yorida E, Emerman J, Pollak M, Dunn SE. Celecoxib analogues disrupt Akt signaling, which is commonly activated in primary breast tumours. Breast Cancer Res 2005;7:R796-807.
62.Li J, Zhu J, Melvin WS, Bekaii-Saab TS, Chen CS, Muscarella P. A structurally optimized celecoxib derivative inhibits human pancreatic cancer cell growth. J Gastrointest Surg 2006;10:207-14.
63.Liu Q, Zhao X, Frissora F, Ma Y, Santhanam R, Jarjoura D, Lehman A, Perrotti D, Chen CS, Dalton JT, Muthusamy N, Byrd JC. FTY720 demonstrates promising preclinical activity for chronic lymphocytic leukemia and lymphoblastic leukemia/lymphoma. Blood 2008;111:275-84.
64.Hung JH, Lu YS, Wang YC, Ma YH, Wang DS, Kulp SK, Muthusamy N, Byrd JC, Cheng AL, Chen CS. FTY720 induces apoptosis in hepatocellular carcinoma cells through activation of protein kinase C delta signaling. Cancer Res 2008;68:1204-12.
65.Park JM, Greten FR, Li ZW, Karin M. Macrophage apoptosis by anthrax lethal factor through p38 MAP kinase inhibition. Science 2002;297:2048-51.
66.Juretic N, Santibanez JF, Hurtado C, Martinez J. ERK1,2 and p38 pathways are involved in the proliferative stimuli mediated by urokinase in osteoblastic SaOS-2 cell line. J Cell Biochem 2001;83:92-8.
67.Lavoie JN, L’Allemain G, Brunet A, Muller R, Pouyssegur J. Cyclin D1 expression is regulated positively by the p42/p44MAPK and negatively by the p38/HOGMAPK pathway. J Biol Chem 1996;271:20608-16.
68.Bulavin DV, Demidov ON, Saito S, Kauraniemi P, Phillips C, Amundson SA, Ambrosino C, Sauter G, Nebreda AR, Anderson CW, Kallioniemi A, Fornace AJ Jr, Appella E. Amplification of PPM1D in human tumors abrogates p53 tumor-suppressor activity. Nat Genet 2002;31:210-5.
69.Bulavin DV, Phillips C, Nannenga B, Timofeev O, Donehower LA, Anderson CW, Appella E, Fornace AJ Jr. Inactivation of the Wip1 phosphatase inhibits mammary tumorigenesis through p38 MAPK-mediated activation of the p16Ink4a-p19Arf pathway. Nat Genet 2004;36:343-50.
70.Manke IA, Nguyen A, Lim D, Stewart MQ, Elia AEH, Yaffe MB. MAPKAP kinase-2 is a cell cycle checkpoint kinase that regulates the G2/M transition and S phase progression in response to UV irradiation. Mol Cell 2005;17:37-48.
71.Xia Z, Dickens M, Raingeaud J, Davis RJ, Greenberg ME. Opposing effects of ERK and JNK-p38 MAP kinases on apoptosis. Science 1995;270:1326-31.
72.Chao JI, Kuo PC, Hsu TS. Down-regulation of surviving in nitric oxide-induced cell growth inhibition and apoptosis of the human lung carcinoma cells. J Biol Chem 2004;279:20267-76.
73.Cheng Y, Chang LW, Tsou TC. Mitogen-activated protein kinases mediate arsenic-induced down-regulation of survivin in human lung adenocarcinoma cells. Arch Toxicol 2006;80:310-8.
74.Li F, Ling X, Huang H, Brattain L, Apontes P, Wu J, Binderup L, Brattain MG. Differential regulation of survivin expression and apoptosis by vitamin D3 compounds in two isogenic MCF-7 breast cancer cell sublines. Oncogene 2005;24:1385-95.
75.de Graaf AO, van Krieken JH, Tonnissen E, Wissink W, van de Locht L, Overes I, Dolstra H, de Witte T, van der Reijden BA, Jansen JH. Expression of C-IAP1, C-IAP2 and SURVIVIN discriminates different types of lymphoid malignancies. Br J Haematol 2005;130:852-9.
76.Hui D, Satkunam N, Al Kaptan M, Reiman T, Lai R. Pathway-specific apoptotic gene expression profiling in chronic lymphocytic leukemia and follicular lymphoma. Mod Pathol 2006;19:1192-202.
77.Pedersen IM, Buhl AM, Klausen P, Geisler CH, Jurlander J. The chimeric anti-CD20 antibody rituximab induces apoptosis in B-cell chronic lymphocytic leukemia cells through a p38 mitogen activated protein-kinase-dependent mechanism. Blood 2002;99:1314-9.
78.Pepper C, Thomas A, Hoy T, Milligan D, Bentley P, Fegan C. The vitamin D3 analog EB1089 induces apoptosis via a p53-independent mechanism involving p38 MAP kinase activation and suppression of ERK activity in B-cell chronic lymphocytic leukemia cells in vitro. Blood 2003;101:2454-60.
79.Pepper C, Thomas A, Fegan C, Hoy T, Bentley P. Flavopiridol induces apoptosis in B-cell chronic lymphocytic leukaemia cells through a p38 and ERK MAP kinase-dependent mechanism. Leuk Lymphoma 2003;44:337-42.
80.Zhang Y, Bharadwaj U, Logsdon CD, Chen C, Yao O, Li M. ZIP4 Regulates Pancreatic Cancer Cell Growth by Activating IL-6/STAT3 Pathway through Zinc Finger Transcription Factor CREB. Clin Cancer Res 2010;16:1423-30.
81.Heikkilä K, Ebrahim S, Lawlor DA.Systemic review of the association between circulating interleukin-6 (IL-6) and cancer. Eur J Cancer 2008;44:937-45.
82.Becker C, Fantini MC, Wirtz S, Nikolaev A, Lehr HA, Galle PR, Rose-John S, Neurath MF. IL-6 signaling promotes tumor growth in colorectal cancer. Cell Cycle 2005;4:217-20.
83.Grivennikov SI, Karin M. Inflammatory cytokines in cancer: tumour necrosis factor and interleukin 6 take the stage. Ann Rheum Dis. 2011;70 Suppl 1:i104-8.
84.Zeng-Pang Chi. Antitumor effects of a novel phenylbutyrate derivative –(S)-HDAC-42 in multiple myeloma cells. Master thesis 2009;cmu-98-9678003-1.
85.Pellat-Deceunynk C, Amiot M, Bataille R, Van Riet I, Van Camp B, Omede P, Boccadoro M. Human myeloma cell lines as a tool for studying the biology of multiple myeloma: a reappraisal 18 years after. Blood 1995;86:4001-2.
86.Lu Q, Wang DS, Chen CS, Hu YD, Chen CS. Structure-based optimization of phenylbutyrate-derived histone deacetylase inhibitors. J Med Chem 2005;48:5530-5.
87.Hideshima T, Chauhan D, Richardson P, Mitsiades C, Mitsiades N, Hayashi T, Munshi N, Dang L, Castro A, Palombella V, Adams J, Anderson KC. NF-?羠 as a therapeutic target in multiple myeloma. J Biol Chem 2002;277:16639-47.
88.Hideshima T, Neri P, Tassone P, Yasui H, Ishitsuka K, Raje N, Chauhan D, Podar K, Mitsiades C, Dang L, Munshi N, Richardson P, Schenkein D, Anderson KC. MLN120B, a novel I?羠 kinase β inhibitor, blocks multiple myeloma cell growth in vitro and in vivo. Clin Cancer Res 2006;12:5887-94.
89.Annunziata CM, Davis RE, Demchenko Y, Bellamy W, Gabrea A, Zhan F, Lenz G, Hanamura I, Wright G, Xiao W, Dave S, Hurt EM, Tan B, Zhao H, Stephens O, Santra M, Williams DR, Dang L, Barlogie B, Shaughnessy JD Jr, Kuehl WM, Staudt LM. Frequent engagement of the classical and alternative NF-?羠 pathways by diverse genetic abnormalities in multiple myeloma. Cancer Cell 2007;12:115-30.
90.Hideshima T, Catley L, Yasui H, Ishitsuka K, Raje N, Mitsiades C, Podar K, Munshi NC, Chauhan D, Richardson PG, Anderson KC. Perifosine, an oral bioactive novel alkylphospholipid, inhibits Akt and induces in vitro and in vivo cytotoxicity in human multiple myeloma cells. Blood 2006;107:4053-62.
91.Richardson P, Lonial S, Jakubowiak A, Krishnan A, Wolf J, Densmore J, Singhal S, Ghobrial I, Stephenson J, Mehta J, Colson K, Francis D, Kendall T, Obadike N, Sullivan K, Martin J, Hideshima T, Lai L, Sportelli P, Gardner L, Birch R, Henderson IC, Anderson K. Multi-center phase II study of perifosine (KRX-0401) alone and in combination with dexamethasone (dex) for patients with relapsed or relapsed/refractory multiple myeloma (MM): promising activity as combination therapy with manageable toxicity. Blood 2007;110:abstr 1164.
92.Druker BJ, Guilhot F, O''Brien SG, Gathmann I, Kantarjian H, Gattermann N, Deininger MW, Silver RT, Goldman JM, Stone RM, Cervantes F, Hochhaus A, Powell BL, Gabrilove JL, Rousselot P, Reiffers J, Cornelissen JJ, Hughes T, Agis H, Fischer T, Verhoef G, Shepherd J, Saglio G, Gratwohl A, Nielsen JL, Radich JP, Simonsson B, Taylor K, Baccarani M, So C, Letvak L, Larson RA. Five-year follow-up of patients receiving imatinib for chronic myeloid leukemia. N Engl J Med 2006;355:2408-17.
93.Carroll M, Ohno-Jones S, Tamura S, Buchdunger E, Zimmermann J, Lydon NB, Gilliland DG, Druker BJ. CGP 57148, a tyrosine kinase inhibitor, inhibits the growth of cells expressing BCR-ABL, TEL-ABL, and TEL-PDGFR fusion proteins. Blood 1997;90:4947-52.
94.Savage DG, Antman KH. Imatinib mesylate--a new oral targeted therapy. N Engl J Med 2002;346:683-93.
95.Tuveson DA, Willis NA, Jacks T, Griffin JD, Singer S, Fletcher CD, Fletcher JA, Demetri GD. STI571 inactivation of the gastrointestinal stromal tumor c-KIT oncoprotein: biological and clinical implications. Oncogene 2001;20:5054-8.
96.Larmonier N, Janikashvili N, LaCasse CJ, Larmonier CB, Cantrell J, Situ E, Lundeen T, Bonnotte B, Katsanis E. Imatinib mesylate inhibits CD4+ CD25+ regulatory T cell activity and enhances active immunotherapy against BCR-ABL- tumors. J Immunol 2008;181:6955-63
97.Dewar AL, Cambareri AC, Zannettino AC, Miller BL, Doherty KV, Hughes TP, Lyons AB. Macrophage colony-stimulating factor receptor c-fms is a novel target of imatinib. Blood 2005;105:3127-32.
98.Dewar AL, Zannettino AC, Hughes TP, Lyons AB. Inhibition of c-fms by imatinib: expanding the spectrum of treatment. Cell Cycle 2005;4:851-3.
99.Dispenzieri A, Gertz MA, Lacy MQ, Geyer SM, Greipp PR, Rajkumar SV, Kimlinger T, Lust JA, Fonseca R, Allred J, Witzig TE. A phase II trial of imatinib in patients with refractory/relapsed myeloma. Leuk Lymphoma 2006;47:39-42.
100.Smith JS, Keller JR, Lohrey NC, McCauslin CS, Ortiz M. Redirected infection of directly biotinylated recombinant adenovirus vectors through cell surface receptors and antigens. Proc Natl Acad Sci USA 1999;96:8855-60.
101.Bewry NN, Nair RR, Emmons MF, Boulware D, Pinilla-Ibarz J, Hazlehurst LA. Stat3 contributes to resistance toward BCR-ABL inhibitors in a bone marrow microenvironment model of drug resistance. Mol Cancer Ther 2008;7:3169-75.
102.Memmott RM, Dennis PA. Akt-dependent and –independent mechanisms of mTOR regulation in cancer. Cell Signal 2009;21:656-64.
103.Imamura K, Ogura T, Kishimoto A, Kaminishi M, Esumi H. Cell cycle regulation via p53 phosphorylation by a 5’-AMP activated protein kinase activator, 5-aminoimidazole-4-carboxamide-1-β-D-ribofuranoside, in a human hepatocellular carcinoma cell line. Biochem Biophys Res Commun 2001;287:562-7.
104.Motoshima H, Goldstein BJ, Igata M, Araki E. AMPK and cell proliferation – AMPK as a therapeutic target for atherosclerosis and cancer. J Physiol 2006;574(Pt 1):63-71.
105.Hardie DG. The AMP-activated protein kinase pathway – new players upstream and downstream J Cell Sci 2004;117(Pt 23):5479-87.
106.Hadad SM, Fleming S, Thompson AM. Targeting AMPK: A new therapeutic opportunity in breast cancer. Crit Rev Hematol Oncol 2008;67:1-7.
107.Zheng B, Jeong JH, Asara JM, Yuan YY, Granter SR, Chin L, Cantley LC. Oncogenic B-RAF negatively regulates the tumor suppressor LKB1 to promote melanoma cell proliferation. Mol Cell 2009;33:237-47.
108.Campa`s C, Lopez JM, Santidria´n AF, Barraga´n M, Bellosillo B, Colomer D, Gil J. Acadesine activates AMPK and induces apoptosis in B-cell chronic lymphocytic leukemia cells but not in T lymphocytes. Blood 2003;101:3674-80.
109.Baumann P, Mandl-Weber S, Emmerich B, Straka C, Schmidmaier R. Activation of adenosine monophosphate activated protein kinase inhibits growth of multiple myeloma cells. Exp Cell Res 2007;313:3592-603.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊