|
1. H. Y. Yu and S. C. Sanday , The effect of substrate on the elastic properties of films determined by the indentation test -- axisymmetric boussinesq problem, Journal of the Mechanics and Physics of Solids 38(6), 745-764 (1990). 2. M. J. Boussinesq, Applications des Potentiels, Gauthier-Villars, Paris, 1885. 3. J. W. Harding and I. N. Sneddon, The elastic stresses produced by the indentation of the plane surface of a semi-infinite elastic solid by a rigid punch, Proceedings of the Cambridge Philosophical Society 41(1), 16-26 (1945). 4. I. N. Sneddon, Boussinesq problem for a flat-ended cylinder, Proceedings of the Cambridge Philosophical Society 42(1), 29-39 (1946). 5. I. N. Sneddon, Boussinesqs problem for a rigid cone, Proceedings of the Cambridge Philosophical Society 44(4), 492-507 (1948). 6. I. N. Sneddon, The relation between load and penetration in the axisymmetric boussinesq problem for a punch of arbitrary profile, International Journal of Engineering Science 3(1), 47-57 (1965). 7. R. S. Dhaliwal and I. S. Rau, The axisymmetric boussinesq problem for a thick elastic layer under a punch of arbitrary profile, International Journal of Engineering Science 8(10), 843-856 (1970). 8. H. Gao, Elastic contact versus indentation modeling of multi-layered materials, International journal of solids and structures 29(20), 2471-2492 (1992). 9. X. Chen, Numerical study on the measurement of thin film mechanical properties by means of nanoindentation, Journal of Materials Research 16(10), 2974-2982 (2001). 10. C. H. Hsueh, Master curves for Hertzian indentation on coating/substrate systems, Journal of Materials Research 19(1), 94-100 (2004). 11. M. Sakai and J. Zhang, Elastic Deformation of Coating/substrate Composites in Axisymmetric Indentation, Journal of Materials Research 20(08), 2173-2183 (2005). 12. N. Schwarzer, The elastic field in a coated half-space under Hertzian pressure distribution, Surface & Coatings Technology 114(2-3), 292-303 (1999). 13. M. Sakai, Indentation rheometry for glass-forming materials, Journal of Non-crystalline Solids 282(2-3), 236-247 (2001). 14. L. Cheng, Flat-punch indentation of viscoelastic material, Journal of Polymer Science. Part B, Polymer Physics 38(1), 10-22 (2000). 15. L. Cheng, Spherical-tip indentation of viscoelastic material, Mechanics of Materials 37(1), 213-226 (2005). 16. M. Sakai, Time-dependent viscoelastic relation between load and penetration for an axisymmetric indenter, Philosophical Magazine. A, Physics of Condensed Matter, Defects and Mechanical Properties 82(10), 1841-1849 (2002). 17. H. Lu, Measurement of creep compliance of solid polymers by nanoindentation, Mechanics of Time-dependant Materials 7(3/4), 189-207 (2003). 18. M. V. Kumar, Analysis of spherical indentation of linear viscoelastic materials, Current Science 87(8), 1088-1095 (2004). 19. M. R. VanLandingham, Viscoelastic characterization of polymers using instrumented indentation. I. Quasi-static testing, Journal of Polymer Science. Part B, Polymer Physics 43(14), 1794-1811 (2005). 20. W. N. Findley, Creep and relaxation of nonlinear viscoelastic materials: with an introduction to linear viscoelasticity, North-Holland Publisher co., Kidlington, Oxford, UK, 1989. 21. M. E. Gurtin, On the linear theory of viscoelasticity, Archive for Rational Mechanics and Analysis 11(1), 291-356 (1962). 22. R. S. Lakes, On Poisson’s ratio in linearly viscoelastic solids, Journal of Elasticity 85(1), 45-63 (2006). 23. A. Jäger, Identification of viscoelastic properties by means of nanoindentation taking the real tip geometry into account, Meccanica 42(3), 293-306 (2007). 24. S. T. Choi, Flat indentation of a viscoelastic polymer film on a rigid substrate, Acta Materialia 56(19), 5377-5387 (2008). 25. I. F. Kozhevnikov, A new algorithm for computing the indentation of a rigid body of arbitrary shape on a viscoelastic half-space, International Journal of Mechanical Sciences 50(7), 1194-1202 (2008). 26. H. S. Lee, Determination of Viscoelastic Poisson’s Ratio and Creep Compliance from the Indirect Tension Test, Journal of Materials in Civil Engineering 21(8), 416-425 (2009). 27. C. Y. Zhang, Extracting the mechanical properties of a viscoelastic polymeric film on a hard elastic substrate. Journal of Materials Research 19(10), 3053-3061 (2004). 28. S. T. Choi, Measurement of time-dependent adhesion between a polymer film and a flat indenter tip, Journal of Physics. D, Applied Physics 41(7), 074023 (2008). 29. K. L. Johnson, Contact Mechanics. Cambridge: Cambridge University Press, Cambridge, UK, 1985. 30. I. F. Kozhevnikov, A new algorithm for solving the multi-indentation problem of rigid bodies of arbitrary shapes on a viscoelastic half-space, International Journal of Mechanical Sciences 52(3), 399-409 (2010). 31. Y. P. Cao, Geometry independence of the normalized relaxation functions of viscoelastic materials in indentation, Philosophical Magazine 90(12), 1639-1655 (2010). 32. H. Li, New methods of analyzing indentation experiments on very thin films, Journal of MaterialsResearch 25(4), 728-734 (2010). 33. M.Vandamme, Viscoelastic solutions for conical indentation, International Journal of Solids and Structures 43(10), 3142-3165 (2006). 34. Y.C Pan and T. W. Chou, Green's function solutions for semi-infinite transversely isotropic materials. International Journal of Engineering Science 17(5), 545-551 (1979). 35. A. Falade, Elastic fields of two-phase transversely isotropic materials, Philosophical Magazine A 45(5), 791-802 (1982). 36. H. Ding, Green's functions for two-phase transversely isotropic magneto-electro-elastic media, Engineering Analysis with Boundary Elements 29(6), 551-561 (2005). 37. G. A. C. Graham, The contact problem in the linear theory of viscoelasticity, International Journal of Engineering Science 3(1), 27-46 (1965). 38. N. N. Lebedev, Axisymmetric contact problem for an elastic layer, Journal of Applied Mathematics and Mechanics 22(3), 442-450 (1958). 39. A. Y. Alexandrov, (1968). Solution of three-dimensional problems of the theory of elasticity for solids of revolution by means of analytical functions. International Journal of Solids and Structures 4(7): 701-721. 40. J. L. Klemm and R. W. Little, The Semi-infinite elastic cylinder under self-equilibrated end loading, SIAM Journal on Applied Mathematics 19(4), 712-729 (1970). 41. K. Adeerogba, On eigenstresses in dissimilar media, Philosophical Magazine 35(2), 281-292 (1977). 42. M. Rahman, Boussinesq type solution for a transversely isotropic half-space coated with a thin film, International Journal of Engineering Science 38(7), 807-822 (2000). 43. M. Eskandari, Green's functions of an exponentially graded transversely isotropic half-space, International Journal of Solids and Structures 47(11-12), 1537-1545 (2010). 44. A. E. H. Love, A Treatise on the Mathematical Theory of Elasticity, 4th ed., General Publishing Co., Toronto, Ontario, Canada, 1906. 45. G. E. Dieter, Mechanical Metallurgy, McGraw-Hill Book Co., London, 1961. 46. K. L. Johnson, Contact mechanics, Cambridge University Press, UK, 1985.
|