跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.110) 您好!臺灣時間:2025/09/29 02:40
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:李信杰
研究生(外文):Hsinchieh Lee
論文名稱:沉浸式生物薄膜反應器之積垢特性探討
論文名稱(外文):Fouling Characteristics of MF membrane in Submerged Membrane Bioreactor
指導教授:黃志彬黃志彬引用關係袁如馨袁如馨引用關係
指導教授(外文):Chihpin HuangJill Ruhsing Pan
學位類別:碩士
校院名稱:國立交通大學
系所名稱:環境工程系所
學門:工程學門
學類:環境工程學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:中文
論文頁數:91
中文關鍵詞:生物薄膜反應器薄膜積垢透膜壓力次臨界通量胞外聚合物薄膜滲透率水流剪力
外文關鍵詞:Membrane bioreactorMembrane foulingTransmembrane pressure (TMP)Sub-critical fluxExtracellular polymeric substances (EPS)PermeabilityShear stress
相關次數:
  • 被引用被引用:15
  • 點閱點閱:695
  • 評分評分:
  • 下載下載:124
  • 收藏至我的研究室書目清單書目收藏:0
生物薄膜反應器 (membrane bioreactor, MBR)之特點在於以薄膜單元取代傳統沉澱池,達到有效之固液分離。目前MBR無法被廣泛應用的原因為薄膜積垢 (membrane fouling)。薄膜積垢的發生會使得薄膜通量衰減或透膜壓力 (transmembrane pressure, TMP)增加,導致清洗薄膜的次數增多而縮短薄膜壽命,提高操作及維護成本。本研究欲對MBR進行薄膜積垢影響因子及其阻塞成因之探討。
MBR於次臨界通量下 (sub-critical flux)操作,積垢速率極為緩慢,但隨著系統中絲狀細菌的增加,積垢速率急遽增加,推測與污泥黏滯性及胞外聚合物 (extracellular polymeric substances, EPS)中多醣類濃度有關。薄膜過濾阻抗以濾餅阻抗 (Rc)為主,隨著薄膜滲透率 (permeability)的增加,Rc及總阻抗 (Rt)會變大,但孔洞阻塞阻抗 (Rf)則會變小,可能原因為濾餅的形成可做為薄膜表面之屏障,避免小分子物質的進入。水流剪力的增加雖能有效降低Rc及Rt,卻無法改善Rf,反而會因Rc的減少而使其增加。懸浮顆粒 (Rss)、膠體物質 (Rcol)及溶解性物質 (Rsol)分別貢獻了62 %、31 %與7 %之過濾阻抗。水流剪力的提升對於降低污泥阻抗 (RAS)最為有效,Rcol+sol其次,Rsol則無效。由於膠體或溶解性物質不易受系統水力條件影響,因此即使MBR於次臨界通量下操作,仍會有薄膜積垢的產生。
By replacing a secondary clarifier with a membrane unit in an activated sludge process (ASP), membrane bioreactors (MBRs) have emerged as one of the innovative solutions for wastewater treatment and reclamation. The application of MBR is constrained by membrane fouling. Fouling leads to permeate flux decline and transmembrane pressure (TMP) increase, resulting in more frequent membrane cleaning and replacement which increase the operating cost. This study is to investigate the mechanism of membrane fouling.
The lab-scale MBR was operated under sub-critical flux. The fouling rate of the MBR was very low. However, with the increase in filamentous bacteria, an abrupt rise in fouling rate was observed along with the increased sludge viscosity and polysaccharides in extracellular polymeric substances (EPS) suggesting their close relationship. Cake resistance (Rc) was the dominant resistance in batch filtration tests. The increase in total resistance (Rt) and Rc and the decrease in pore resistance (Rf) with increasing membrane permeability suggested that the cake formed on the membrane surface hindered the penetration of smaller particulates inside the membrane pores. Although increasing hydraulic shear stress could effectively reduce the Rt and Rc, the Rf increased due to the reduced cake barrier. The relative contributions of SS (Rss), colloid (Rcol) and solutes (Rsol) toward total resistance were 62 %, 31 % and 7 %, respectively. Hydrodynamic control was a powerful method to mitigate macroscopic fouling (RAS), but it could not prevent the deposition of soluble macromolecules (Rss). Despite the choice of filtration at sub-critical flux, fouling was experienced due to the effect of soluble macromolecules.
中文摘要 I
英文摘要 II
誌 謝 III
目 錄 IV
表 目 錄 VII
圖 目 錄 VIII
符號索引 X

第一章 前言 1
1.1 研究緣起 1
1.2 研究目的與內容 3
第二章 文獻回顧 4
2.1 生物薄膜反應器 6
2.1.1 歷史沿革 6
2.1.2 操作型式 7
2.1.3 優點 9
2.2 薄膜單元 12
2.2.1 薄膜孔徑及材質 12
2.2.2 薄膜模組型式 13
2.2.3 截流式與掃流式過濾 15
2.2.4 薄膜積垢 16
2.2.5 薄膜積垢解決方法 19
2.2.6 薄膜阻抗分析 20
2.3 生物薄膜反應器之積垢因子 22
2.3.1 薄膜性質 23
2.3.2 污泥特性 24
2.3.2.1 污泥濃度 24
2.3.2.2 溶解性物質 24
2.3.2.3 顆粒粒徑分佈 25
2.3.2.4 胞外聚合物 26
2.3.3 操作條件 28
2.3.3.1 掃流速度與曝氣強度 28
2.3.3.2 水力停留時間與有機負荷率 28
2.3.3.3 污泥停留時間 29
2.4 臨界通量與次臨界通量 30
第三章 實驗材料、設備與方法 34
3.1 實驗材料 35
3.1.1 進流水樣 35
3.1.2 實驗薄膜 36
3.2 實驗設備 37
3.2.1 沉浸式生物薄膜反應器 37
3.2.2 截流式過濾系統 39
3.3 實驗方法 40
3.3.1 臨界通量之量測 40
3.3.2 污泥馴養 41
3.3.3 胞外聚合物分析 43
3.3.4 親疏水性分析 46
3.3.5 比攝氧率分析 47
3.3.6 SEM & EDS分析 48
3.3.7 FTIR分析 49
3.3.8 薄膜阻抗分析 50
3.3.9 不同污泥成份之阻抗分析 51
第四章 結果與討論 53
4.1 沉浸式生物薄膜反應器之操作特性研究 53
4.1.1 臨界通量之量測 53
4.1.2 污泥濃度變化 55
4.1.3 污泥膠羽大小變化 56
4.1.4 胞外聚合物變化 58
4.1.5 污泥膠羽親疏水性變化 63
4.1.6 菌體活性變化 64
4.1.7 有機物去除效率 65
4.1.8 氨氮去除效率 66
4.1.9 次臨界通量操作下之薄膜積垢現象 67
4.1.9.1 薄膜表面元素分析 70
4.1.9.2 薄膜表面官能基分析 72
4.2 截流式過濾系統之薄膜阻抗分析 73
4.2.1 薄膜表面結構及親疏水性 73
4.2.2 薄膜孔徑 77
4.2.4 水流剪力 78
4.2.5 污泥成份 80
第五章 結論與建議 82
5.1 結論 82
5.2 建議 83
參考文獻 84
表 目 錄
表 2-1 全球商業化MBR之整理 7
表 2-2 不同MBR系統之薄膜阻抗分析 21
表 2-3 各種臨界通量定義及其量測方法比較 32
表 3-1 濃縮合成水樣之組成及濃度 35
表 3-2 實驗薄膜之基本特性 36
表 3-3 污泥馴養之操作條件 42
表 3-4 實驗分析項目及方法 42
表 4-1 乾淨薄膜表面之元素種類及含量 70
表 4-2 積垢薄膜表面之元素種類及含量 71
表 4-3 不同材質薄膜之親疏水性比較 76
表 4-4 不同材質薄膜之過濾阻抗分析 76
表 4-5 不同孔徑薄膜之過濾阻抗分析 77
表 4-6 不同水流剪力對KUBOTA薄膜之過濾阻抗分析 79
表 4-7 水流剪力對不同孔徑MCE薄膜之過濾阻抗分析 79
表 4-8 不同污泥成份對薄膜積垢之貢獻 80

圖 目 錄
圖 2-1 MBR取代傳統二級處理程序設施之示意圖 5
圖 2-2 MBR之操作型式 8
圖 2-3 沉浸式與側流式MBR之研究數量變化 8
圖 2-4 薄膜模組型式 14
圖 2-5 薄膜過濾型式 16
圖 2-6 薄膜阻塞機制 17
圖 2-7 薄膜通量與TMP之關係 18
圖 2-8 薄膜積垢因子 22
圖 2-9 顆粒質量傳輸示意圖 31
圖 3-1 研究架構 34
圖 3-2 MBR之示意圖 37
圖 3-3 MBR系統之實際操作情況 38
圖 3-4 截流式過濾系統之示意圖 39
圖 3-5 逐步通量增加法 40
圖 3-6 EPS之萃取流程 43
圖 3-7 Phenol-sulfuric acid method 44
圖 3-8 Bradford method 45
圖 3-9 親疏水性之接觸角比較 46
圖 4-1 臨界通量量測 53
圖 4-2 薄膜積垢速率與滲透率隨操作通量之變化 54
圖 4-3 MLSS、MLVSS/MLSS及SVI之變化 55
圖 4-4 污泥膠羽大小之分佈 56
圖 4-5 污泥膠羽大小之變化 57
圖 4-6 污泥脫水性之變化 59
圖 4-7 污泥膠羽之形態 59
圖 4-8 EPS組成之變化 60
圖 4-9 EPS中蛋白質與多醣類濃度之變化 61
圖 4-10 溶解性、萃取性及總EPS濃度之變化 62
圖 4-11 污泥膠羽親疏水性與EPS組成之變化 63
圖 4-12 菌體活性與SMP濃度之變化 64
圖 4-13 MBR之有機物進流、出流濃度與去除率 65
圖 4-14 MBR之氨氮進流、出流濃度與去除率 66
圖 4-15 MBR系統之TMP變化 68
圖 4-16 KUBOTA薄膜之表面結構 69
圖 4-17 乾淨薄膜表面之元素分析圖譜 70
圖 4-18 積垢薄膜表面之元素分析圖譜 71
圖 4-19 乾淨及積垢薄膜表面之FTIR分析圖譜 72
圖 4-20 不同材質薄膜之表面結構 74
圖 4-21 不同材質薄膜之接觸角分析 75
圖 4-22 不同污泥成份之過濾阻抗變化 81
Adham, S., Jacangelo, J. G. and Laine, J. M. (1993) J. AWWA., 87:62.
Brindle, K. and Stephenson, T. (1996)“The application of membrane biological reactors for the treatment of wastewaters.”Biotechnol. Bioeng., 49, 601-610.
Bouhabila, E. H., Aim, R. B. and Buisson, H. (1998)“Microfiltration of activated sludge using submerged membrane with air bubbling (application to wastewater treatment).”Desalination, 118, 315-322.
Bura, R., Cheung, M., Liao, B., Finlayson, J., Lee, B. C., Droppo, I. G., Leppard, G. G. and Liss, S. N. (1998)“Composition of Extracellular Polymeric Substances in the Activated Sludge Floc Matrix."Water Sci. Technol., 37, 325-333.
Baker, D. J. and Stuckey, D. C. (1999)“A review of soluble microbial products (SMP) in wastewater treatment system”Water Sci. Technol., 33, 3063-3082.
Bouhabila, E. H., Aim, R. B. and Buisson, H. (2001)“Fouling characterisation in membrane bioreactors.”Sep. Purif. Technol., 22-23, 123-132.
Bai, R. B. and Leow, H. F. (2002)“Microfiltration of activated sludge wastewater-the effect of system operation parameters.”Sep. Purif. Technol., 29, 189-198.
Bacchin, P. (2004) A possible link between critical and limiting flux for colloidal systems: consideration of critical deposit formation along a membrane. J. Membr. Sci., 228, 237-241.
Bae, T. H. and Tak, T. M. (2005)“Interpretation of fouling characteristics of ultrafiltration membranes during the filtration of MBR mixed liquor.” J. Membr. Sci., 264, 151-160.
Carman, P. C. (1938)“Fundamental principles of industrial filtration.” Trans. Inst. Chem. Eng., 16, 168-176.
Chang, I. S., Choo, K. H., Lee, C. H., Koh, J. H., Kim, S. W., Paik, U. H. and Koh, U. C. (1994)“Application of ceramic membrane as a pretreatment in anaerobic digestion of alcohol-distillery wastes.”J. Membr. Sci., 90, 131-139.
Cote, P., Buisson, H., Pound, C. and Arakaki, G. (1997)“Immersed membrane activated sludge for the reuse of municipal wastewater.” Desalination, 113, 189-196.
Chen, V., Fane, A. G., Madaeni, S. and Wenten, I. G. (1997)“Particle deposition during membrane filtration of colloids : transition between concentration polarization and cake formation.”J. Membr. Sci., 125, 109-122.
Chang, I. S. and Lee, C. H. (1998)“Membrane filtration characteristics in membrane coupled activated sludge system-the effect of physiological states of activated sludge on membrane fouling.”Desalination, 120, 221-233.
Cicek, N., Franco, P., Suidan, M., Urbain, V. and Manem, J. (1999)
“Characterization and comparison of a membrane bioreactor and a conventional activated-sludge system in the treacment of wastewater containing high-molecular-weight compounds.”Water Environ. Res., 71, 64-70.
Chang, I. S., Lee, C. H. and Ahn, K. H. (1999)“Membrane filtration characteristics in membrane coupled activated sludge system : the effect of floc structure of activated sludge on membrane fouling.”Sep. Sci. Technol., 34, 1743-1758.
Chang, I. S., Le-Clech, P., Jefferson, B. and Judd, S. (2002)“Membrane fouling in MBRs for wastewater treatment.”J. Environ. Eng., 128:11.
Chan, R., Chen, V. and Bucknall, M. P. (2002)“Ultrafiltration of protein mixtures: measurement of apparent critical flux, rejection performance, and identification of protein deposition.”Desalination, 146, 83-90.
Cho B. D. and Fane A. G. (2002)“Fouling transient in nominally sub-critical flux operation of a membrane bioreactor.”J. Membr. Sci., 209, 391-403.
Choi, K. Y. J. and Dempsey, B. A. (2005)“Bench-scale evaluation of critical flux and TMP in low-pressure membrane filtration.”J. AWWA., 97:7.
Defrance, L. and Jaffrin, M. Y. (1999)“Comparison between filtrations at fixed transmembrane pressure and fixed permeate flux : application to a membrane bioreactor used for wastewater treatment.”J. Membr. Sci., 152, 203-210.
Defrance L., Jaffrin M. Y., Gupta B., Paullier P. and Geaugey V. (2000)
“Contribution of various constituents of activated sludge to membrane bioreactor fouling.”Bioresour. Technol., 73, 105-112.
Fane, A. G., Fell, C. J. D. and Nor, M. T. (1981)“Ultrafiltration/ Activated sludge system-development of a predictive model.”Polym. Sci. Technol., 13, 631-658.
Field, R. W., Wu, D., Howell, J. A. and Gupta, B. B. (1995)“Critical flux concept for microfiltration fouling.”J. Membr. Sci., 100, 259-272.
Frolund, B., Palmgren, R., Keiding, K. and Nielsen P. H. (1996)
“Extraction of extracellular polymers from activated sludge using a cation exchange resin."Water Res., 30, 1749-1758.
Fang, H. H. P. and Liu, H. (2002)“Extraction of extracellular polymeric substance (EPS) of sludge”J. Biotech., 95, 249-256
Fang, H. H. P. and Shi, X. (2005)“Pore fouling of microfiltration membranes by activated sludge.”J. Membr. Sci., 264, 161-166.
Fan, F. S., Zhou, H. and Husain, H. (2006)“Identification of wastewater sludge characteristics to predict critical flux for membrane bioreactor processes.”Water Res., 40, 205-212.
Gerhardt, P. and Murray, R. G. E. (1981)“Manual of methods for general bacteriology”American Society for Microbiology, Washington, D.C., Chapter 17, 333-334.
Gander, M., Jefferson, B. and Judd, S. (2000)“Aerobic MBRs for domestic wastewater treatment: A review with cost considerations.”Sep. Purif. Technol., 18, 119-130.
Hodgson, P. A., Leslie, G. L., Schneider, R. P., Fane, A. G., Fell, C. J. D. and Marshall, K. C. (1993)“Cake resistance and solute rejection in bacterial microfiltration: The role of the extracellular matrix.”J. Membr. Sci., 79, 35-53.
Howell, J. A. (1995)“Sub-critical flux operation of microfiltration.”J. Membr. Sci., 107, 165-171.
Huang, X., Liu, R. and Qian, Y. (2000)“Behaviour of soluble microbial products in a membrane bioreactor.”Process Biochem., 36, 401-406.

Hong, S. P., Bae, T. H., Tak, T. M., Hong, S. and Randall, A. (2002)
“Fouling control in activated sludge submerged hollow fiber membrane bioreactors.”Desalination, 143, 219-228.
Howell, J. A., Chua, H. C. and Arnot, T. C. (2004)“In situ manipulation of critical flux in a submerged MBR using variable aeration rates, and effects of membrane history.”J. Membr. Sci., 242, 13-19.
Jorand, F., Guicherd, P., Urbain, V., Manem, J. and Block, J. C. (1994)
“Hydrophobicity of activated sludge flocs and laboratory growth bacteria.”Water Sci. Technol., 30, 211-218.
Jorand, F., Zartarian, F., Thomas, F., Block, J. C., Bottero, J. Y., Villemin, G., Urbain, V. and Manem, J. (1995)“Chemical and structural (2D) linkage between bacteria within activated sludge flocs.”Water Res., 29, 1639-1647.
Kim, J. S., Lee, C. H., and Chun, H. D. (1998)“Comparison of ultrafiltration characteristics between activated sludge and BAC sludge. ”Water Res., 32, 3443-3451.
Kim, J. S., Lee, C. H., and Chang, I. S. (2001)“Effect of pump shear on the performance of a crossflow membrane bioreactor.”Water Res., 35, 2137-2144.
Kaichang, Y., Xianghua, W., QingJie, B. and Huang, X. (2003)“Critical flux enhancements with air sparging in axial hollow fibers cross-flow microfiltration of biologically treated wastewater.”J. Membr. Sci., 224, 69-79.
Kimura, K., Yamato, N., Yamamura, H. and Watanabe, Y. (2005)
“Membrane fouling in pilot-scale membrane bioreactors treating municipal wastewater”Environ. Sci. Technol., 39, 6293-6299.
Lubbecke, S., Vogelpohl, A. and Dewjanin, W. (1995)“Wastewater treatment in a biological high-performance system with high biomass concentration”Water Res., 29, 793-802.
Liu, R., Huang, X., Wang, C., Chen, L. and Qian, Y. (2000)“Study on hydraulic characteristics in a submerged membrane bioreactor process.”Process Biochem., 36, 249-254.


Li, H., Fane A. G., Coster H. G. L. and Vigneswaran S. (2000)“An assessment of depolarisation models of crossflow microfiltration by direct observation through the membrane.”J. Membr. Sci., 172, 135-147.
Le-Clech, P., Jefferson, B., Chang, I. S. and Judd, S. (2003a)“Critical flux determination by the flux-step method in a submerged membrane bioreactor.”J. Membr. Sci., 227, 81-93.
Le-Clech, P., Jefferson, B. and Judd, S. (2003b)“Impact of aeration, solids concentration and membrane characteristics on the hydraulic performance of a membrane bioreactor”J. Membr. Sci., 218, 117-129.
Lim, A. L. and Bai, R. (2003)“Membrane fouling and cleaning in MF of activated sludge wastewater.”J. Membr. Sci., 216, 279-290.
Muller, E. B., Stouthamber, A. H. M., Verseveld, H. W. and Eikelboom, D. H. (1995)“Aerobic domestic wastewater treatment in a pilot with complete sludge retention by crossflow filtration.”Water Res., 29, 1179-1189.
Madaeni S., Fane A., and Wiley D. (1999)“Factors influencing critical flux in membrane filtration of activated sludge.”J. Chem. Technol. Biotechnol., 74, 539-543.
Mukai, T., Takimoto, K., Kohno, T. and Okada, M. (2000)
“Ultrafiltration behaviour of extracellular and metabolic products in activated sludge system with UF separation process.”Water Res., 34, 902-908.
MBR focus:the operators’ perspective, Filtration+Separation, Industry focus, 20.
Meng, F., Zhang, H., Yang, F., Li, Y., Xiao, J. and Zhang, X. (2006)
“Effect of filamentous bacteria on membrane fouling in submerged membrane reactor”J. Membr. Sci., 272, 161-168.
Nagaoka, H., Yamanishi, S. and Miya, A. (1998)“Modeling of biofouling by extracelluar polymers in a membrane separation activated sludge. ”Water Sci. Technol., 38, 497-504.
Ng, H. Y., Slawomir, W. and Hermanowicz. (2005)“Membrane bioreactor operation at short retention times:performance and biomass characteristics.”Water Res., 39, 981-992.

Ognier, S., Wisniewski, C. and Grasmick, A. (2004)“Membrane bioreactor fouling in sub-critical filtration conditions : a local critical flux concept.”J. Membr. Sci., 229, 171-177
Pieracci, J., Crivello, J. V. and Belfort, G. (1999)“Photochemical modi-fication of 10 kDa polyethersulfone ultrafiltration membranes for reduction of biofouling.”J. Membr. Sci., 156, 223-240.
Pollice, A., Brookes, A., Jefferson, B. and Judd, S. (2005)“Sub-critical flux fouling in membrane bioreactors - a review of recent literature.” Desalination, 174, 221-230.
Rittmann, B. E., Bae, W., Namkung, E., and Lu, C. J. (1987)“A critical evaluation of microbial product formation in biological processes.”Water Sci. Technol., 19, 517-528.
Rosenberger, S., Kruger, U., Witzig, R., Manz, W., Szewzyk, U. and Kraume, M. (2002)“Performance of a bioreactor with submerged membranes for aerobic treatment of municipal wastewater.”Water Res., 36, 413-420.
Rosenberger, S. and Kraume, M. (2002)“Filterability of activated sludge in membrane bioreactors.”Desalination, 146, 373-379.
Rosenberger, S., Evenblij, H., te Poele, S., Wintgens, T. and Laabs, C. (2005)“The importance of liquid phase analyses to understand fouling in membrane assisted activated sludge processes-six case studies of different European research group.”J. Membr. Sci., 263, 113-126.
Rojas, M. E. H., Kaam R. V., Schetrite, S. and Albasi, C. (2005)“Role and variations of supernatant compounds in submerged membrane bioreactor fouling.”Desalination, 179, 95-107.
Shimizu, Y., Rokudai, M., Tohya, S., Kayaware, E., Yazawa, T., Tanaka, H. and Eguchi, K. (1989)“Filtration characteristics of charged alumina membranes for methanogenic waste.”J. Chem. Eng., 22, 635-641.
Shimizu, Y., Rokudai, M., Thoya, S., Tanaka, H., and Eghchi, K. (1990)
“Effect of membrane resistance on filtration characteristics for methanogenic wastes.”Kakaku Kogaku Ronbunshu, 16, 145.
Sato, S. and Ishii, Y. (1991)“Effects of activated sludge properties on water flux of ultrafiltration membrane used for human excrement treatment.”Water Sci. Technol., 23, 1601-1608.
Strohwald, N. K. H. and Ross, W. R. (1992)“Application of the ADUF process to brewery effluent on a laboratory scale.”Water Sci. Technol., 25, 95-105.
Stephenson, T., Judd, S., Jefferson, B. and Brindle, K. (2000)
“Membrane Bioreactors for Wastewater Treatment.”IWA, London.
Ueda T., Hata K. and Kikuoka Y. (1996)“Treatment of domestic sewage from rural settlements by a membrane bioreactor.”Water Sci. Technol., 34, 189-196.
Urbain, V., Mobarry, B., De Silva, V., Stahl, D. A., Rittmann, B. E. and Manem, J. (1998)“Integration of performance, molecular biology and modeling to describe the activated sludge process.”Water Sci. Technol., 37, 223-229.
Ueda, T. and Horan, N.J. (2000)“Fate of indigenous bacteriophage in a membrane bioreactor.”Water Res., 34, 2151-2159.
Visvanathan, C., Yang, B. S., Muttamara, S. and Maythanukhraw, R. (1997)“Application of air backflushing technique in membrane bioreactor.”Water Sci. Technol., 36, 259-266.
Visvanathan, C., Aim, R. B. and Parameshwaran, K. (2000)“Membrane separation bioreactors for wastewater treatment.”Critical Reviews in Environ. Sci. Technol., 30, 1-48.
Wisniewski, C. and Grasmick, A. (1998)“Floc size distribution in a membrane bioreactor and consequences for membrane fouling.”Colloids Surf., A, 138, 403-411.
Wu, D., Howell, J. A. and Field, R. W. (1999)“Critical flux measurement for model colloids.”J. Membr. Sci., 152, 89-98.
Wen, C., Huang, X. and Qian, Y. (1999)“Domestic wastewater treatment using an anaerobic bioreactor coupled with membrane filtration”Process Biochem., 35, 335-340.
Wang, Y., Kim, J. H., Choo, K. H., Lee, Y. S. and Lee, C. H. (2000)
“Hydrophilic modification of polypropylene microfiltration membrane by ozone-induced graft polymerization.”J. Membr. Sci., 169, 269-276.
Wisniewski, C., Grasmick, A. and Cruz, A. L. (2000)“Critical particle size in membrane bioreactors case of a denitirifying bacterial suspension.”J. Membr. Sci., 178, 141-150.
Yamamoto, K., Hiasa, M., Mahmood, T. and Matsuo, T. (1989)“Direct solid-liquid separation using hollow fiber membrane in an activated sludge aeration tank. ”Water Sci. Technol., 21, 43-54.
Yamamoto, K. (1994)“Membrane filtration in rapid filtration, biological filtration and membrane filtration.”Gihodo Shuppan, Tokyo, 255.
Yang, W., Cieck, N. and Ilg, J. (2006)“State-of the art of membrane bioreactors : Worldwide research and commercial applications in North America.”J. Membr. Sci., 270, 201-211.
Zhang, B. and Yamamoto, K. (1996)“Seasonal change of microbial population and activities in the buliding wastewater reuse system using a membrane separation activated sludge process.”Water Sci. Technol., 34, 295-302.
Zhang, B., Yamamoto, K., Ohgaki, S. and Kamiko, N. (1997)“Floc size distribution and bacterial activities in membrane separation activated sludge processes for small-scale wastewater treatment/reclamation.” Water Sci. Technol., 35, 37-44.
Zydney, (2005) Southeast Asia Internationl Training and Research Program for Groundwater Treatment Technologies and Advanced Membrane Processes, Taipei.
呂維明、呂文芳 (1994)“過濾技術”,高立圖書有限公司
杜松翰 (2004)“沉浸式生物薄膜系統之阻塞機制與清洗方式探討”,國立交通大學環境工程研究所碩士論文
陳君豪 (2003)“射頻電漿與聚合物表面之作用”,國立清華大學物理學系碩士論文
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊