跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.176) 您好!臺灣時間:2025/09/09 22:26
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:吳文超
研究生(外文):Wu Wen-Chau
論文名稱:電腦自動化之方格計數法碎形分析於數位影像上的限制─生物醫學應用上的例子
論文名稱(外文):Limitations of box counting fractal analysis on digital images using automated computer analysis: Examples on biomedical applications
指導教授:鍾孝文
指導教授(外文):Chung Hsiao-Wen
學位類別:博士
校院名稱:國立臺灣大學
系所名稱:電機工程學研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2002
畢業學年度:91
語文別:英文
論文頁數:95
中文關鍵詞:碎形維度方格計數碎形分析
外文關鍵詞:fractal dimensionbox countingfractal analysis
相關次數:
  • 被引用被引用:2
  • 點閱點閱:262
  • 評分評分:
  • 下載下載:46
  • 收藏至我的研究室書目清單書目收藏:0
在組織病理學上(histopathology),型態結構(morphometric)的分析無論對於鑑別或者診斷,都有十分重要的幫助。然而,生物結構的型態極為複雜,諸如面積、周長等型態參數,在檢驗樣本的不同尺度規模之下,可能會有相當大的變異。因此,「組織的描述」對傳統幾何學(conventional Euclidean geometry)來說,一直相當棘手,例如:結腸直腸息肉(colorectal polyps)、口腔上皮損傷(epithelial lesions in the oral cavity)、乳房X光攝影片(mammograms)顯示的乳癌、腫瘤的血管增生(vasculature)。有鑑於此,「找尋客觀的方法以確實定量細胞或組織的複雜型態」是一個相當活躍的研究領域。
近來,在一些特定病理過程中細胞複雜程度的量化上,碎形分析(fractal analysis)似乎有著越來越大的影響力。現有的碎形分析工具裡,生物科學經常使用方格計數法(box-counting)來估算碎形維度(fractal dimension)。碎形維度是一項描述「空間填補程度」(degree of space-filling)的參數。根據之前的研究顯示,方格運算法求得之碎形維度在多種疾病上可作為一個有用的辨識值。然而,在抽象的數學參數與病理意義之間,尚缺乏理論基礎提供兩者關連。因此,在文獻中存有相當數量的爭議,值得且必要進一步的探討。
本研究之目的為:透過檢驗已知維度之對象,探討方格計算法的物理意義,尤其是,比較「單一物件」及「其集合構成」(ensembles)的碎形維度。結果顯示:兩者之間並不相同!對於這看似與碎形理論矛盾的結果,本研究將從數學模型上加以說明,並提出衍伸之意涵。另外,對於碎形分析應用在數位影像上的固有特性、使用時應注意的事項也有討論。

Morphometric analysis is important in the assistance of differential diagnoses in histopathology. However, for morphologically complicated biological structures, description of texture using conventional Euclidean geometry has been difficult because the estimation of shape parameters such as area or perimeter may vary significantly with the magnification at which the specimen examinations are performed. Examples include colorectal polyps, epithelial lesions in the oral cavity, breast cancer on mammograms, or tumor vasculature. The search for an objective means to reliably quantify complicated cell or tissue morphology is thus an active field of research development.
Recently, fractal analyses seem to gain on influence in quantifying the degree of cell complexity that may have been altered during certain pathological processes. Among many existing tools for fractal analysis, the box counting algorithm is frequently used in biological science to obtain the fractal dimension, a parameter that describes the extent of the space-filling property. Previous studies have demonstrated that the box counting fractal dimension is a helpful diagnostic discriminant in various diseases. However, there lacks a theoretical essence providing the linkage between this abstract mathematical parameter and the pathological meanings. A significant number of controversies hence exist in the literature, which warrants the necessity of further investigations.
The goal of this study was to explore, using examinations on illustrative objects of known geometry, the physical implications of the box counting fractal dimension. In particular, the fractal dimensions computed using box counting on single objects were compared with the results on an ensemble of the same objects. An explanation was provided for our findings in this study, and the consequent implications were addressed. Some of the inherent characteristics demanding cautions when using this method on digitized images were also discussed.

CHINESE ABSTRACT
ENGLISH ABSTRACT
1. BACKGROUND …………………………………………………………1-1
2. INTRODUCTION ………………………………………………………2-1
3. THEORY ………………………………………………………………3-1
3-1 Metric Space ………………………………………………… 3-1
3-2 Fractal Dimension ……………………………………………3-2
3-3 Box Counting Algorithm …………………………………… 3-4
3-4 Triadic Koch Curve ………………………………………… 3-7
3-5 Self-similarity ………………………………………………3-10
4. METHODS …………………………………………………………… 4-1
4-1 Generation of Single Objects and Their Ensembles……4-1
4-2 Box Counting Fractal Dimension ………………………… 4-4
4-3 Linear Regression and Correlation Coefficient……… 4-6
4-4 Postprocessing of Retinogram …………………………… 4-11
5. RESULTS …………………………………………………………… 5-1
5-1 Box Counting Fractal Dimension of Single Object…… 5-1
5-2 Box Counting Fractal Dimension of Object ensemble… 5-3
5-3 Spacing Between Individual Objects …………………… 5-6
5-4 Non-integer Divisions of the Field of View ………… 5-8
5-5 Fractal Analysis of Retina Vasculature ……………… 5-10
6. DISCUSSION …………………………………………………………6-1
6-1 Limitations of Box-counting Fractal Analysis in Digital
Images……………………………………………………………6-1
6-2 Examples in Biomedicine ……………………………………6-6
7. CONCLUSION …………………………………………………………7-1
APPENDIX ……………………………………………………………… A-1
I. Theoretical prediction of N(e) versus e for gridline
objects………………………………………………………………A-1
II. Other algorithms for fractal dimension estimation…… A-6
REFERENCES

1. B. B. Mandelbrot, The Fractal Geometry of Nature (Freeman, New York, 1983).
2. K. M. Keough, P. Hyam, D. A. Pink, and B. Quinn, “Cell surfaces and fractal dimensions,” J. Microsc. 163, 95-99 (1991).
3. S. S. Cross, J. P. Bury, P. B. Silcocks, T. J. Stephenson, D. W. K. Cotton, “Fractal geometric analysis of colorectal polyps,” J. Pathol. 172, 317-323 (1994).
4. G. Landini and J. W. Rippin, “How important is tumor shape? Quantification of the epithelial-connective tissue interface in oral lesions using local connected fractal dimension analysis,” J. Pathol. 179, 210-217 (1996).
5. V. Velanovich, “Fractal analysis of mammographic lesions: a prospective, blinded trial,” Breast Cancer Res. Treat. 49, 245-249 (1998).
6. J. W. Baish and R. K. Jain, “Fractals and cancer,” Cancer Res. 60, 3683-3688 (2000).
7. G. Landini, G. Misson and P. Murray, “Fractal analysis of the normal human retinal fluorescein angiogram,” Curr. Eye Res. 12, 23-27 (1993).
8. F. Family, B. R. Masters and D. E. Platt, “Fractal pattern formation in human retinal vessels,” Phys. D. 38, 98-103 (1989).
9. S. S. Cross and D. W. K. Cotton, “The fractal dimension may be a useful morphometric discriminant in histopathology,” J. Pathol. 166, 409-411 (1992).
10. S. S. Cross, “Fractals in pathology,” J. Pathol. 182, 1-8 (1997).
11. E. Claridge, P. N. Hall, M. Keefe, and J. P. Allen, “Shape analysis for classification of malignant melanoma,” J. Biomed. Eng. 14, 229-234 (1992).
12. E. A. Neale, L. M. Bowers, and T. G. Smith, Jr., “Early dendrite development in spinal cord cell cultures: a quantitative study,” J. Neurosci. Res. 34, 54-66 (1993).
13. N. L. Fazzalari and I. H. Parkinson, “Fractal dimension and architecture of trabecular bone,” J. Pathol. 178, 100-105 (1996).
14. T. G. Smith, W. B. Marks, G. D. Lange, W. H. Sheriff Jr. and E. A. Neale, “A fractal analysis of cell images,” J. Neurosci Meth. 27, 173-180 (1989).
15. R. W. Glenny, H. T. Robertson, S. Yamashiro and J. B. Bassingthwaighte, “Applications of fractal analysis to physiology,” J. Appl. Physiol. 70, 2351-2367 (1991).
16. H. W. Chung and H. J. Chung, “Correspondence re: J. W. Baish and R. K. Jain, Fractals and cancer. Cancer Res., 60: 3683-3688, 2000,” Cancer Res. 61, 8347-8350 (2001).
17. S. S. Cross, A. J. McDonagh, T. J. Stephenson, D. W. Cotton, and J. C. Underwood, “Fractal and integer-dimensional geometric analysis of pigmented skin lesions,” Am. J. Dermatopath. 17, 374-378 (1995).
18. J. D. Murray, “Use and abuse of fractal theory in neuroscience,” J. Comp. Neurol. 361, 369-371 (1995).
19. H. W. Chung, C. C. Chu, M. Underweiser, and F. W. Wehrli, “On the fractal nature of trabecular structure,” Med. Phys. 21, 1535-1540 (1994).
20. J. Feder, Fractals (Plenum, New York, NY, 1988), pp. 6-30.
21. S. Majumdar, R. S. Weinstein, and R. R. Prasad, “ Application of fractal geometry techniques to the study of trabecular bone,” Med. Phys. 20, 1611-1619 (1993).
22. P. Herman, L. Kocsis, and A. Eke, “Fractal branching pattern in the pial vasculature in the cat,” J. Cereb. Blood Flow Metab. 21, 741-753 (2001).
23. A. I. Penn and M. H. Loew, “Estimating fractal dimension with fractal interpolation function models,” IEEE Trans. Med. Imaging 16, 930-937 (1997).
24. E. Fernandez, J. A. Bolea, G. Ortega, and E. Louis, “Are neurons multifractals?” J. Neurosci. Methods 89, 151-157 (1999).
25. A. Hunt and D. L. Johnson, “Characterizing the outlines of degraded fine-particles by fractal dimension,” Scanning Microsc. 10, 69-81 (1996).
26. P. Caligiuri, M. L. Giger, and M. Favus, “Multifractal radiographic analysis of osteoporosis,” Med. Phys. 21, 503-508 (1994).
27. M. J. Vilela, M. L. Martins, and S. R. Boschetti, “Fractal patterns for cells in culture,” J. Pathol. 177, 103-107 (1995).
28. R. S. Weinstein and S. Majumdar, “Fractal geometry and vertebral compression fractures,” J. Bone Miner. Res. 9, 1797-1802 (1994).
29. A. Avakian, R. E. Kalina, E. H. Sage, and A. H. Rambhia et al, “Fractal analysis of region-based vascular change in the normal and non-proliferative diabetic retina,” Curr. Eye Res. 24, 274-280 (2002).
30. M. A. Mainster, “The fractal properties of retinal vessels: Embryological and clinical implications,” Eye 4, 235-241 (1990).
31. A. Daxer, “The fractal geometry of proliferative diabetic retinopathy: Implications for the diagnosis and the process of retinal vasculogenesis,” Curr. Eye Res. 12, 1103-1109 (1993).
32. B. R. Masters, “Fractal analysis of normal human retinal blood vessels,” Fractals 2, 103-110 (1994).
33. N. L. Fazzalari and I. H. Parkinson, “Fractal properties of subchondral cancellous bone in severe osteoarthritis of the hip,” J. Bone Miner. Res. 12, 632-640 (1997).
34. S. S. Cross, S. Rogers, P. B. Silcocks, and D. W. K. Cotton, “Trabecular bone does not have a fractal structure on light microscopic examination,” J. Pathol. 170, 311-313 (1993).
35. F. Moal, D. Chappard, J Wang, and E Vuillemin et al, “Fractal dimension can distinguish models and pharmacologic changes in liver fibrosis in rats,” Hepatology 36, 840-849 (2002).
36. M. Ciccotti and F. Mulargia, “Pernicious effect of physical cutoffs in fractal analysis,” Phys. Rev. E. 65, 037201 (2002).
37. D. Avnir, O. Biham, D. Lidar, and O. Malcai, “Is the geometry of nature fractal?” Science 279, 39-40 (1998).
38. (Editorials.) “Fractals and medicine,” Lancet 338, 1425-1426 (1991).
39. R. Wingate, T. Fitzgibbon and I. D. Thompson, “ Lucifer yellow, retrograde tracers, and fractal analysis characterize adult ferret retinal ganglion cells,” J. Comp. Neurol. 323, 449-474 (1992).
40. L. Mosekilde, “Age-related changes in vertebral trabecular bone architecture- assessed by a new method,” Bone 9, 247-250 (1988).

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top