跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.19) 您好!臺灣時間:2025/09/04 23:47
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:郭舒綺
研究生(外文):Shu-Chi Kuo
論文名稱:以樹薯澱粉利用 Lactobacillus amylovorus 連續式醱酵產製乳酸
論文名稱(外文):Lactate production from cassava by Lactobacillus amylovorus in a continuous bioreactor
指導教授:吳石乙
指導教授(外文):Shu Yii Wu
學位類別:碩士
校院名稱:逢甲大學
系所名稱:化學工程學所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2011
畢業學年度:99
語文別:中文
論文頁數:115
中文關鍵詞:連續式系統乳酸Lactobacillus amylovorus迴流
外文關鍵詞:Lactic acidLactobacillus amylovoruscontinuous systemcell-recycle
相關次數:
  • 被引用被引用:0
  • 點閱點閱:458
  • 評分評分:
  • 下載下載:73
  • 收藏至我的研究室書目清單書目收藏:0
經濟、能源及環境為全球目前最關心之三大議題。傳統以化石燃料為主之塑膠製品不易回收,增加汙染問題;而由玉米、蔽奏孕芺隤型鬼鴟皛禱嶀妓ㄙ咿珨E合而成的生物可分解塑膠─聚乳酸 (PLA) 則愈來愈受科學及產業注意。樹薯澱粉是碳水化合物中較具經濟效益的農作物之一,其可被 Lactobacillus amylovorus 於醱酵中所分泌之 ?amylases 和 glucoamylases 液化水解成可利用之糖分子。而為提高製程效率,以連續式操作之小型研究是微生物醱酵生產最常見且最實用的。本研究即以樹薯澱粉為料源,並以 Lactobacillus amylovorus 進行連續式醱酵產乳酸,探討不同pH、基質濃度、水力滯留時間以及迴流控制對醱酵產乳酸之影響。
連續式系統易受環境因子汙染,造成操作上之不穩定,因此研究發現,以 pH 5.0 控制系統,最能使系統穩定操作,其乳酸濃度為 18.31 g/L。改變基質濃度能夠提升乳酸產量,最適條件為 35 g/L 之澱粉濃度,生產乳酸 33.51 g/L,而澱粉濃度超過 35 g/L 即會產生基質效應抑制乳酸之生產。
於連續式操作下,隨著 HRT 下降,乳酸濃度隨之提升,至 HRT 7 h 穩態時有較佳之乳酸濃度及產量 34.22 g/L 與 4.74 g/L/h,當 HRT 持續降低,乳酸濃度及產量則逐漸下降。當連續式接上迴流操作進行反應時,以 2.08 mL/min. 之迴流速率能夠產生最大效益,其最佳乳酸濃度及產量為 23.51 g/L 及 5.86 g/L/h,若加快迴流速率,會降低乳酸之生產。
The three Es, Economy, Energy and Environment, are the trend for global developing policy. The traditional oil-based plastics are not biodegradable and difficult to recycle, thus the bio-based polymers - Poly lactic acid (PLA), which made from the natural resources, are getting more attraction at scientists and industrial sector. Lactic acid is the monomer of PLA, and is already extensively applied in food, pharmaceutical, cosmetic, and textile industries. Because of its wide application, the efficient production process of lactic acid is critically needed. Cassava is one of the most efficient crops in terms of carbohydrate production. It could liquefy and hydrolyze to sugar by Lactobacillus amylovorus of ?amylases and glucoamylases in the saccharification process. In this study we used cassava starch as substrate and ferment lactic acid with Lactobacillus amylovorus in a continuous reactor. The effect of the different pH value, concentration of starch, HRT, cell-recycle rate on both cell growths and lactic acid production were discussed.
The continuous system is prone to contamination and hence operational stability is the common problem encountered. The experimental results showed that operation with the pH controlled at 5.0 in a continuous system could bring stable operating with a production of the lactic acid concentration of 18.31 g/L. It was found that the better production of lactic acid of 33.51 g/L was obtained from the feedstock of starch concentration 35 g/L, and a substrate inhibition occured when the starch concentration higher than 35 g/L.
With the decreasing of HRT in a continuous system, the lactic acid concentration increased. The maximum lactic acid concentration and productivity were 34.22 g/L and 4.74 g/L/h respectively when operated in HRT 7 h. When the system operated at faster dilution rate than HRT 7 h, it could lower the lactic acid concentration and productivity. Finally, it operated the continuous system with membranes cell-recycle. The maximum lactic acid and productivity were 23.51 g/L and 5.86 g/L/h respectively in the substrate recycle rate of 2.08 mL/min.
摘要...............................................................................................................................I
Abstract III
目錄.............................................................................................................................V
圖目錄 ......................................................................................................................IX
表目錄 ......................................................................................................................XI
第一章 緒論 1
1.1 研究目的與動機 1
1.2 實驗架構 4
第二章 文獻回顧 5
2.1 澱粉之介紹 5
2.1.1 澱粉水解酵素之種類 7
2.2 乳酸 11
2.2.1 乳酸之基本性質介紹 11
2.2.2 乳酸之應用與特性 12
2.3 乳酸之來源 14
2.3.1 化學合成法 15
2.3.2 微生物醱酵法 15
2.4 乳酸菌 20
2.4.1 乳酸菌之基本性質介紹 20
2.4.2 Lactobacillus amylovorus 之簡介 21
2.4.3 乳酸菌代謝路徑 22
2.4.4 同步糖化醱酵 25
2.5 聚乳酸 27
2.5.1 聚乳酸之介紹 27
2.5.2 聚乳酸之基本性質與應用 29
2.6 乳酸之分離與純化 31
第三章 實驗材料及方法 33
3.1 實驗儀器設備與藥品 33
3.1.1實驗儀器 33
3.1.2 藥品試劑 34
3.1.3 連續式實驗裝置 35
3.1.4 菌種來源 37
3.2 實驗方法與步驟 39
3.2.1 菌種培養 39
3.2.2 基質配方 39
3.2.3 連續式醱酵實驗方法 40
3.3 分析方法 42
3.3.1 乳酸及其液相組成分析 42
3.3.2 還原糖濃度分析 43
3.3.3 總糖濃度分析 44
3.3.4 菌量分析 44
3.3.5 菌相組成分析 45
3.3.6 高解析可變真空掃描式電子顯微鏡 49
第四章 結果與討論 51
4.1 以生物法產乳酸之連續式製程 52
4.1.1 連續式反應槽之穩定操作策略 52
4.1.2 乳酸菌優勢化 55
4.1.3 pH值控制策略 57
4.1.4 菌相分析 62
4.1.5 液相組成分析 63
4.2 不同基質濃度對乳酸產量之影響 67
4.2.1 以內直徑 0.3 公分之進料基質管進行醱酵反應 67
4.2.2 以內直徑 0.6 公分之進料基質管進行醱酵反應 69
4.3 不同水力滯留時間 (HRT) 對乳酸產量之影響 73
4.3.1 連續式醱酵產乳酸之未迴流系統 74
4.3.2 連續式醱酵產乳酸之有迴流系統 80
4.4 連續式醱酵槽菌相觀察 85
第五章 結論與建議 90
5.1 結論 90
5.2 建議 91
參考文獻 92
Aeschlimann A and Stockar UV, (1991), Continuous production of lactic acid from whey permeate by Lactobacillus helveticus in a cellrecycle reactor, Enzyme Microb. Technol., 13, 811-816.

Akerberg C and Zacchi G, (2000), An economic evaluation of the fermentative production of lactic acid from wheat flour, Bioresour. Technol, 75, 119-126.

Altaf Md, Naveena BJ, Reddy G, (2007), Use of inexpensive nitrogen sources and starch for L(+) lactic acid production in anaerobic submerged fermentation, Bioresour. Technol., 98, 498-503.

Alt1ntaş MM, ?槌gen K?? K1rdar B, ?雉san ZI, Oliver SG, (2002), Improvement of ethanol production from starch by recombinant yeast through manipulation of environmental factors, Enzyme and Microbial Technology, 31, 604- 647.

Bailly M, (2002), Production of organic acids by bipolar electrodialysis: realizations and perspectives, Desalination, 144, 157-162.

Benninga H, (1990), A History of Lactic Acid Making, Kluwer Academic Publishers, Dordrecht, Netherlands, 1-61.

Bernfeld P, (1955), Amylase alpha and beta, Methods Enzymol., 1, 149-154.

Bibal B, Vayssier Y, Goma G and Pareilleux A, (1991), High-Concentration Cultivation of Lactococcus cremoris in a cell-recycle reactor, Biotechnology and Bioengineering, 37, 746-754.

Cahvan AR, Raghunathan A, Venkatesh KV, (2009), Modelingand experimental studies on intermittent starch feeding and citrate addition in simultaneous saccharification and fermentation of starch to flavor compounds, J. Ind. Microbiol Biotechnol, 36, 509-519.


Callewaert R, Holo H, Devreese B, Van Beeumen J, Nes I, De Vuyst L, (1999), Characterization and production of amylovorin L471, a bacteriocin purified from Lactobacillus amylovorus DCE 471 by a novel three-step method, Microbiology, 145, 2559-2568.

Carothers WH, Arvin GA, (1929), Studies on polymerization and ring formation, J. Am. Chem. Soc., 51, 2560-2560.

Cheng P, Mueller R, Jaeger S, Bajpai R, Iannotti G, (1991), Lactic acid production from enzyme-thinned corn starch using Lactobacillus amylovorus, J. Indusk Microb., 7, 27-34.

Colin J Suckling, (1990), Enzyme Chemistry, 311.

Cotton JC, Pometto III AL, Gvozdenovic-Jeremic J, (2001), Continuous lactic acid fermentation using a plastic composite support biofilm reactor, Appl. Microbiol. Biotechnol., 57, 626-630.

Datta R, Tsai SP, Bonsignore P, Moon SH, Frank JR, (1995), Technolohical and economic potential of poly (lactic acid) and lactic acid derivatives, FEMS Microbiol. Rev., 16, 221-231.

Datta R and Henry M, (2006), Lactic acid: recent advances in products, processes and technologies-a review, J. Sci. Chem. Technol. Biotechnol., 81, 1119-1129.

De Vuyst L, Callewaert R, Crabbe K, (1996a), Primary metabolite kinetics of bacteriocin biosynthesis by Lactobacillus amylovorus and evidence for stimulation of bacteriocin production under unfavourable growth conditions, Microbiology, 145, 817-827.

De Vuyst L, Callewaert R, Pot B, (1996b), Characterization of the antagonistic activity of Lactobacillus amylovorus DCE 471 and large scale isolation of its bacteriocin amylovorin L471, Systematic and Applied Microbiology, 19, 9-20.

Dubois M, Gilles KA, Hamilton JK, Rebers PA, Smith F, (1956), Colorimetric method for determination of sugar and related substances, Anal. Chem., 28, 350-356.

Franken T, (2000), Bipolar membrane technology and its applications, Membrane Technology, 125, 8-11.

Ghofar A, Ogawa S, Kokugan T, (2005), Production of L-lactic acid from fresh cassava roots slurried with tofu liquid waste by Streptococcus bovis, J. Biosci. and Bioeng., 100, 606-612.

Gonz?鴣ez-Vara YRA, Vaccari G, Dosi E, Trilli A, Rossi M, Matteuzzi D, (2000), Enhanced production of L-(+)-lactic acid in chemostat by Lactobacillus casei DSM 20011 using ion-exchange resins and cross-flow filtration in a fully automated pilot plant controlled via NIR, Biotechnol. Bioeng., 67, 147-156.

Gordon GL and Doelle HW, (1976), Purification, Properties and Immunological Relationship of L(+)-Lactate Dehydrogenase from Lactobacillus casei, Eur. J. Biochem., 67, 543-555.

Hensel R, Mayr U, Stetter KO and Kandler O, (1997), Comparative studies of lactic acid dehydrogenases in lactic acid bacteria, Arch. Microbiol., 112, 81-93.

Hofvendahl K, Akerberg C, Zacchi G, Hahn-Hagerdal B, (1999), Simultaneous enzymatic wheat starch saccharification and fermentation to lactic acid by Lactococcus lactis, Appl Microbiol Biotechnol, 52, 163-169.

Hofvendahl K, Hahn-Hagerdal B, (2000), Factors affecting the fermentative lactic acid production from renewable resources, Enzyme Microb. Technol., 26, 87-107.

Hongo M, Nomura Y, Iwahara M, (1986), Novel method of lactic acid production by electrodialysis fermentation, Appl. Environ. Microbiol., 52, 314-319.

Ike A, Toda N, Hirata K, Miyamoto K, (1997), Hydrogen photoproduction from CO2-fixing microalgal biomass: application of lactic acid fermentation by Lactobacillus amylovorus, Journal of Fermentation and Bioengineering, 84, 428-433.

James JA, Berger JL, Lee BH, (1997), Purification of Glucoamylase from Lactobacillus amylovorus ATCC 33621, Current Microbiology, 34, 186-191.

John RP, Madhavan K, Nampoothiri Pandey A, (2007), Fermentative production of lactic acid from biomass: an overview on process developments and future perspectives, Appl. Microbiol. Biotechnol., 74, 524-534.

John RP, Nampoothiri KM, Pandey A, (2006), Solid-state fermentation for L-lactic acid production from agro wastes using Lactobacillus delbrueckii, Proc. Biochem., 41, 759-763.

Kandler O, (1983), Carbhydrate metabolism in lactic acid bacteria, A van Leeuw, 49, 209-224.

Kaplan DL, Mayer JM, (1994), Degradation methods and degradation kinetics of polymer films, Polymer Degradation and Stability, 45, 165-172.

Koenig MF, Huand SJ, (1995), Biodegradable blends and composites of polycaprolactone and starch derivatives, Polymer, 36, 1877-1882.

Kwon S, Yoo IK, Lee WG, Chang HN, Chang YK, (2000), High-rate continuous production of lactic acid by lactobacillus rhamnosus in a two-stage membrane cell-recycle bioreactor, Biotechnology and Bioengineering, 73, 25-34.

Laopaiboon P, Thani A, Leelavatcharamas V, Laopaiboon L, (2010), Acid hydrolysis of sugarcane bagasse for lactic acid production, Bioresource Technology, 101, 1036-1043.

Li D and Chen H, (2007), Biological hydrogen production from steam-exploded straw by simultaneous saccharification and fermentation, Int. J. Hydrogen Energy, 32, 1742-1748.

Limin W, Bo Z, Bo L, Chunyu Y, Bo Y, Qinggang L, Cuiqing M, Ping X,Yanhe M, (2010), Efficient production of L-lactic acid from cassava powder by Lactobacillus rhamnosus, Bioresource Technology, 101, 7895-7901.

Linde M, Galbe M, Zacchi G, (2007), Simultaneous saccharification and fermentation of steam-pretreated barley straw at low enzyme loadings and low yeast concentration, Enzyme Microb. Technol., 40, 1100-1107.

Litchfield JH, (1996), Microbiological production of lactic acid, Adv. Appl. Microbiol., 42, 45-95.

Madhavan Nampoothiri K, Nair NR, John RP, (2010), An overview of the recent developments in polylactide (PLA) research, Bioresource Technology, 101, 8493-8501.

Mckay LL, Baldwin KA, (1990), Applications for Biotechnology: present and future improvements in lactic acid bacteria, FEMS Microbiol. Rev., 87, 3-14.

Mercier P, Yerushalmi L, Rouleau D, Dochain D, (1992), Kinetics of Lactic Acid Fermentation on Glucose and Corn by Lactobacillus amylophilus, J. Chem. Tech. Biotechnol., 55, 1-121.

Messens W, Neysens P, Vansieleghem W, Vanderhoeven J, De Vuyst L, (2002), Modeling growth and bacteriocin production by Lactobacillus amylovorus DCE 471 in response to temperature and pH values used for sourdough fermentations, Applied and Environmental Microbiology, 68, 1431-1435.

Milcent S, Carrere H, (2001), Clarification of lactic acid fermentation broths, Sep. Purif. Technol., 22-23, 393-401.

Nakamura LK, (1981), Lactobacillus amylovorus, a new starch-hydrolyzing species from cattle waste-corn fermentations, Int. J. Syst. Bacteriol., 31, 56-63.


Nolasco-Hipolito C, Matsunaka T, Kobayashi G, Sonomoto K, Ishizaki A, (2002), Synchronized fresh cell bioreactor system for continuous L-(+)-lactic acid production using Lactococcus lactis IO-1 in hydrolysed sago starch, J. Biosci. Bioeng., 93, 281-287.

Peters D, (2007), Raw materials, Adv. Biochem. Eng. Biotechnol., 105, 1-30.

Qian N, Stanley GA, Hahn-H?讚erdal B, R?熛str?卌 P, (1994), Purification and characterization of two phosphoglucomutases from Lactococcus lactis subsp. lactis and their regulation in maltose- and glucose-utilizing cells, J. Bacteriol., 176, 5304-5311.

Rivas B, Moldes AB, Dominguez JM, Parajo JC, (2004), Lactic acid production from corn cobs by simultaneous saccharification and fermentation: a mathematical interpretation, Enzyme Microb. Technol., 34, 627-634.

Romani A, Yanez R, Garrote G, Alonso JL, (2008), SSF production of lactic acid from cellulosic biosludges, Bioresour Technol., 99, 4247-4254.

Ryu HW, Yun JS, Wee YJ, (2003), Lactic acid, In: Pandey A (Ed.), Concise Encyclopedia of Bioresource Technology, The Haworth Press, New York, 635-644.

Siebold M, Frieling PV, Joppien R, Rindfleisch D, Schugerl K, Roper H, (1995), Comparasion of the production of lactic acid by three different lactobacillus and its recovery by extraction and eletrodialysis, Process Biochemistry, 30, 81-95.

Srivastava A, Roychoudhury PK, Sahai V, (1992), Extractive lactic acid fermentation using ion exchanger resins, Biotechnology and Bioengineering, 39, 607-613.

Stepan DJ, Olson ES, Shockey RE, Stevens BG, Gallagher JR, (2001), Recovery of lactic acid from American crystal sugar company wastewater, Energy & Environmental Research Center, University of North Dakota.

Stiles ME and Holzapfel WH, (1997), Lactic acid bacteria of foods and their current taxonomy, Int. J. Food Microbiol., 36, 1-29.

Tejayadi S and Cheryan M, (1995), Lactic acid from cheese whey permeate, Productivity and economics of a continuous membrane bioreactor, Appl. Microbiol. Biotechnol, 43, 242-248.

Timberlake KC, (2002), Chemistry: An Introduction to General, Organic & Biological Chemistry, 8th edition, Pearson.

Thomsen MH, Guyot TP, Kiel P, (2007), Batch fermentations on synthetic mixed sugar and starch medium with amylolytic lactic acid bacteria, Application Microbiology Biotechnology, 74, 540-546.

Vera H, Karel M, Mojmir R, Libor P, Vladimir M, (2001), Application of electrodialysis for lactic acid recovery, Czech J. Food Sci., 19, 73-80.

Vihinen M and Mantasala P, (1989), Microbial Amylolytic Enzymes, Critical Reviews in Biochemistry and Molecular Biology, 24, 329-418.

Wee YJ, Kim JN, Ryu HW, (2006), Biotechnological production of lactic acid and its recent applications, Food Technol. Biotechnol., 44, 163-172.

Wee YJ, Ryu HW, (2009), Lactic acid production by Lactobacillus sp. RKY2 in a cell-recycle continuous fermentation using lignocellulosic hydrolyzates as inexpensive raw materials, Bioresource Technology, 100, 4262-4270.

Xiaodong W, Xuan G, Rakshit SK, (1997), Direct fermentative production of lactic acid on cassava and other starch substrates, Biotechnology Letters, 19, 841-843.

Yabannavar VM and Wang DIC, (1991), Extractive Fermentation forLactic Acid Production, Biotechnology and Bioengineering, 37, 1095-1100.



朱明毅、郭文法、林靜宜、林麗桂、黃筱萍、陳憲明,(2004),天然澱粉高分子之材料特性簡介,化工技術,第 12 卷,第 3 期,第 144 頁。

江明峰,(1986) ,聚乳酸/蒙脫土奈米複合材料之製備與物性研究,碩士論文,國立中興大學。

李兆彥,(2007),聚乳酸熱安定性之研究,碩士論文,高苑科技大學。

李仁智,(1997) ,聚乳酸/聚甲基丙烯酸甲酯?浀X體結構與物性之研究,碩士論文,長庚大學。

李國源,(2007) ,生物可分解性聚乳酸之特性、應用及分解,碩士論文,大同大學。

邢榮慶,(2006) ,氨濃度對米根黴生產 L 型乳酸的影響,碩士論文,大同大學。

林卓儀,(2009) ,以 Lactobacillus amylovorus 利用澱粉醱酵製造乳酸,碩士論文,逢甲大學。

林岱佐,(1986) ,聚乙二醇末端基對其與聚乳酸摻合物相容性、結晶行為與形態學的影響,碩士論文,國立台灣大學。


柴浣蘭,(2008) ,澱粉/聚乳酸製備生物可分解性塑料與性質研究,博士論文,國立台灣科技大學。

翁國佑,(2010) ,米根黴菌在攪拌式發酵槽中生產 L(+)-乳酸之研究,碩士論文,國立台灣科技大學。

高敏智,(2009) ,利用新型生化反應器探討澱粉生產酒精之最適化三菌共培養政策,碩士論文,長庚大學。

陳韋誠,(2009) ,乳酸生產程序最適化分析,碩士論文,國立台灣科技大學。

陳國誠,(1989) ,酵素工程學,藝軒圖書出版社。

程麗君,(2002) ,饋料批式醱酵之進料策略探討,博士論文,國立成奶j學。

葉獻彬,(2001) ,生物可降解性聚乳酸高分子之合成與降解性質探討,碩士論文,陽明大學。

廖玉潔,(2005) ,酵素分離與化學治療用藥層析分析之探討,博士論文,國立成奶j學。
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top