跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.62) 您好!臺灣時間:2025/11/16 15:03
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:吳長哲
研究生(外文):Wu, Chang-Che
論文名稱:多重網格計算法應用於多孔介質兩相不可壓縮不相容的流體與不可壓縮的Navier-Stokes方程式
論文名稱(外文):A multigrid method and its applications to two-phase incompressible immiscible flows in porous media and the incompressible Navier-Stokes equations
指導教授:葉立明
指導教授(外文):Yeh, Li-Ming
學位類別:碩士
校院名稱:國立交通大學
系所名稱:應用數學系所
學門:數學及統計學門
學類:數學學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:英文
論文頁數:84
中文關鍵詞:多重網格法不可壓縮不可相容多孔介質水流問題Navier-Stokes 方程式局部守恆數值方法不連續係數橢圓方程式Laplace 方程式Poisson 方程式Transport 部分Diffusive 部分Prolongation 運算Restriction 運算Neumann 邊界條件
外文關鍵詞:Multigrid methodIncompressibleImmisciblePorous mediaWaterflooding problemNavier-Stokes equationsLCELMNumerical simulationStrongly discontinuous coefficientsElliptic equationLaplace equationPoisson EquationTransport partDiffusive partProlongation OperatorRestriction OperatorNeumann Boundary Condition
相關次數:
  • 被引用被引用:0
  • 點閱點閱:224
  • 評分評分:
  • 下載下載:16
  • 收藏至我的研究室書目清單書目收藏:0
此論文主要目的是著重於利用多重網格法來解決具有strongly discontinuous coefficients的橢圓方程式。首先介紹如何使用多重網格法來解決三維度具有strongly discontinuous coefficients的橢圓方程式並提供一些數值測試結果,並展示一些與其他數值方法比較的數據結果。然後應用此方法於以下兩個數學模型中,其中一個是兩相不可壓縮流與不相容的水流問題,另一個是Navier-Stokes方程式。而在這兩個數學模型上,我們利用Locally conservative Eulerian-Lagrangian methods (簡稱LCELM) 來計算這兩個數學模型的transport方程式,並針對這兩個數學模型展示一些數值結果。
The primary objective of this thesis is to introduce a multigrid method to solve elliptic equation with strongly discontinuous coefficients. In the beginning, we explain how to use the multigrid method to solve a 3D elliptic equation with strongly discontinuous coefficients, and then show some numerical testing results. Also, we provide some results compared with other numerical methods to show the efficency of the mutigrid method. Furthermore, we apply the multigrid method to solve two mathematical problems, one is for the waterflooding problem and the other is the incompressible Navier-Stokes equations. A locally conservative Eulerian-Lagrangian method (briefly LCELM) is used to compute the transport part of the two models. Some numerical results for the two problems will be presented as well.
ii
中文摘要.............................................................i
Abstract............................................................ii
Acknowledgements ..................................................iii
Contents............................................................iv
Figures..............................................................v
1. Introduction......................................................1
2. A Multigrid Method for Nonuniform Elliptic Equation...............3
2.1 Multigrid Method..............................................3
2.2 Discretized Equation..........................................6
2.3 Prolongation Operator.........................................9
2.4 Restriction Operator.........................................13
2.5 The Poisson Equation with Strongly Discontinuous Coefficient.21
2.6 Neumann Boundary Condition...................................22
2.7 Test Examples................................................24
3. The Waterflooding Problem........................................35
3.1 Computational domain.........................................37
3.1.1 Discretization in temporal domain......................37
3.1.2 Discretization in Spatial Domain.......................40
3.2 The Pressure Equation........................................41
3.3 The Transport Equation.......................................42
3.3.1 The MMOC Procedure.....................................42
3.3.2 The LCELM Procedure....................................44
3.3.3 Diffusive Fractional Step for the Saturation...........47
4. The Incompressible Navier-Stokes Equations.......................48
5. Numerical Results................................................51
5.1 Numerical Results of the Waterflooding Problem...............51
5.2 Numerical Results of the Incompressible Navier-Stokes Equations..67
6. Conclusion............................................................79
Reference.............................................................80
Appendix............................................................82
[1] A. Brandt, Multi-level adaptive solutions to boundary-value problems, Math. Comp.
31 (1997), 333-390.
[2] M. Murad and J. Cushman A multiscale theory of swelling porous media, I I:Dial
porosity models for consolidation of clay incorporating Physiochemical effects,
Preprint #287, Center for Applied Mathematics, Purdue University, August 1996.
[3] S. N. Antontsev, On the solvability of boundary value problems for degenerate
two-phase porous flow equations, Dinamika Splosnoi Sredy Vyp., 10 (1972) 28-53. In
Russian.
[4] G. Chavent, A new formulation of diphasic incompressible flows in porous media, in:
Applications of Methods of Functional Analysis to Problems in Mechanics, Lecture
Notes Mathematics. 503 (1976) 258-270, Springer-Verlag, Berlin, New York, (P.
Germain and B. Nayroles, eds.).
[5] G. Chavent and J. Jaffre, Mathematical Models and Finite Elements for Reservoir
Simulation (North-Holland, Amsteram, 1986).
[6] William L. Briggss Van Emden Henson Steve F. McCormick, A multigrid toturial 2nd
ed. 2000.
[7] A. BRANDT, Multigrid Techniques: 1984 Guide with Applications to Fluid
Dynamics, GMD-Studien Nr. 85, Gesellschaft für Mathematik und Datenverarbeitung, St. Augustin, Bonn, 1984.
[8] Taras V. Gerya, Introduction to numerical geodynamic modelling, Cambridge, UK;
New York:Cambridge University Press, 2010.
[9] R. E. Alcouffe, A. Brandt, J. E. Dendy, and J. W. Painter. The Multi-grid Method for
the Diffusion Equation with Strongly Discontinuous Coefficients. SIAM J. Sci. Stat.
Comput. Vol. 2. No. 4. December 1981.
[10] Yousef Saad, Iterative methods for sparse linear systems 2nd ed. 2003.
[11] Tatebe, O., “The Multigrid Preconditioned Conjugate Gradient Method,” in
Proceedings of sixth Copper Mountain Conference on Multigrid Methods, pp. 621-634, NASA Conference Publication 3224, April 1993.
[12] J. Douglas, F. Pereira, and L. M. Yeh. A locally conservative Eulerian-Lagrangian
numerical method and its application to nonlinear transport in porous media.
[13] J. Douglas, Jr., Superconvergence in the pressure in the simulation of miscible
displacement, SIAM J. Numer. Anal., 22 (1985) 962-969.
[14] J. Douglas, Jr., R. E. Ewing, and M. F. Wheeler, The approximation of the pressure by
a mixed method in the simulation of miscible displacement, RAIRO, Anal.
Numer., 17 (1983) 17-33.
[15] J. Douglas, Jr., C.S. Huang, and F. Pereira. The modified method of characteristics
with adjusted advection. To appear in Numerische Mathematik; available as Technical
Report #298, Center for Applied Mathematics, Purdue University, June 1997.
[16] Clases Johnson, Numerical solution of partial differential equations by the finite
element method. 1994.
[17] Roger Temam “Navier-Stokes equations : theory and numerical analysis.” In Studies in mathematics and its applications. 3rd, ed. J. L. Lions, G. Papanicolaou and R. T. Rockafellar, 397-398, 1984.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊