|
[1] A. Brandt, Multi-level adaptive solutions to boundary-value problems, Math. Comp. 31 (1997), 333-390. [2] M. Murad and J. Cushman A multiscale theory of swelling porous media, I I:Dial porosity models for consolidation of clay incorporating Physiochemical effects, Preprint #287, Center for Applied Mathematics, Purdue University, August 1996. [3] S. N. Antontsev, On the solvability of boundary value problems for degenerate two-phase porous flow equations, Dinamika Splosnoi Sredy Vyp., 10 (1972) 28-53. In Russian. [4] G. Chavent, A new formulation of diphasic incompressible flows in porous media, in: Applications of Methods of Functional Analysis to Problems in Mechanics, Lecture Notes Mathematics. 503 (1976) 258-270, Springer-Verlag, Berlin, New York, (P. Germain and B. Nayroles, eds.). [5] G. Chavent and J. Jaffre, Mathematical Models and Finite Elements for Reservoir Simulation (North-Holland, Amsteram, 1986). [6] William L. Briggss Van Emden Henson Steve F. McCormick, A multigrid toturial 2nd ed. 2000. [7] A. BRANDT, Multigrid Techniques: 1984 Guide with Applications to Fluid Dynamics, GMD-Studien Nr. 85, Gesellschaft für Mathematik und Datenverarbeitung, St. Augustin, Bonn, 1984. [8] Taras V. Gerya, Introduction to numerical geodynamic modelling, Cambridge, UK; New York:Cambridge University Press, 2010. [9] R. E. Alcouffe, A. Brandt, J. E. Dendy, and J. W. Painter. The Multi-grid Method for the Diffusion Equation with Strongly Discontinuous Coefficients. SIAM J. Sci. Stat. Comput. Vol. 2. No. 4. December 1981. [10] Yousef Saad, Iterative methods for sparse linear systems 2nd ed. 2003. [11] Tatebe, O., “The Multigrid Preconditioned Conjugate Gradient Method,” in Proceedings of sixth Copper Mountain Conference on Multigrid Methods, pp. 621-634, NASA Conference Publication 3224, April 1993. [12] J. Douglas, F. Pereira, and L. M. Yeh. A locally conservative Eulerian-Lagrangian numerical method and its application to nonlinear transport in porous media. [13] J. Douglas, Jr., Superconvergence in the pressure in the simulation of miscible displacement, SIAM J. Numer. Anal., 22 (1985) 962-969. [14] J. Douglas, Jr., R. E. Ewing, and M. F. Wheeler, The approximation of the pressure by a mixed method in the simulation of miscible displacement, RAIRO, Anal. Numer., 17 (1983) 17-33. [15] J. Douglas, Jr., C.S. Huang, and F. Pereira. The modified method of characteristics with adjusted advection. To appear in Numerische Mathematik; available as Technical Report #298, Center for Applied Mathematics, Purdue University, June 1997. [16] Clases Johnson, Numerical solution of partial differential equations by the finite element method. 1994. [17] Roger Temam “Navier-Stokes equations : theory and numerical analysis.” In Studies in mathematics and its applications. 3rd, ed. J. L. Lions, G. Papanicolaou and R. T. Rockafellar, 397-398, 1984.
|