跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.134) 您好!臺灣時間:2025/12/22 18:22
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:洪啟耀
研究生(外文):Chi-Yao Hung
論文名稱:以小尺度模型實驗模擬土石流形貌變化與流變參數之關係
論文名稱(外文):Relation between Debris Flow Rheology and Fan Deposit Morphology Investigated Using Small-scale Experiments
指導教授:卡艾瑋
口試委員:陳樹群周憲德吳富春郭志禹
口試日期:2011-06-23
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:土木工程學研究所
學門:工程學門
學類:土木工程學類
論文種類:學術論文
論文出版年:2011
畢業學年度:99
語文別:英文
論文頁數:173
中文關鍵詞:土石流快速掃描地形微小尺度實驗影像分析
外文關鍵詞:debris flowfast scan methodmirco-scale experimentimage analysis
相關次數:
  • 被引用被引用:1
  • 點閱點閱:505
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文的研究目標是想要了解土石流自峽谷流至堆積扇之流變與地貌關係。以小尺度的實驗進行研究,使用不同比例的高嶺土、河床溪砂和水之混和物代表具有高黏滯性的土石流,在此我們進行了兩系列的實驗,分別改變土石流之含水量及顆粒含量以進行比較。 為記錄土石流高速移動與地形快速之變化過程,故使用一特殊旋轉工具將影像成功轉換至三維座標系統,進而取得正確的地形變化情況,同時也記錄土石流的流動狀況。根據多次實驗結果,可將實驗結果分為兩部分進行討論,一部分為渠道內的行為變化,除了討論實驗間參數的影響外,我們使用了運動波法模擬土石流流動之形貌,並且與現地峽谷進行比較,而在峽谷至堆積扇的反應,我們可以推測土石流可分為兩段流動情況,一為快速流動時期主要將土石流的影響範圍向前擴大,另為慢速流動時期主要將影響範圍往左右擴大並且向上堆積,隨著含水量的增加或是顆粒含量的減少我們可以發現快速流動時期的延時拉長,而慢速流動時期的延時則縮短,造成在左右方的堆積較不明顯而縱向的影響範圍拉長,而含水量較低的土石流則有相反的反應。將實驗結果和現地進行定性的比較,同樣的現象均可在現地和實驗結果中發現。

The aim of this thesis is to understand the relationship between rheology and morphology for debris flow going from a narrow valley to a fan. In micro-scale experiments, Kaolinite, black sand and water are mixed to represent debris flows of high viscosity. We change two parameters which are water content and the coarse particle content to observe variation in debris flow behavior due to changes in composition. To measure the fast flow and rapid deformation of the flow surface, a fast scan method using a high speed camera and rotating laser are developed. The results of the experiments are analyzed in two parts, one is channel flow behavior and another is the canyon-fan transition. In channelized results beside compare the experiments, we use kinematic wave to simulate the surge process in channel, and compare the cross section in field. At the canyon-fan transition, debris flow deposit in two stages. In the first stage, a high speed front advance on to fan. In the second stage, the slower tail tends to spread laterally. Increasing water content and decreasing coarse particle content makes the first stage longer and the second stage shorter. As a result, lateral deposits are few pronounced. Finally, the experimental results are compared with field observations.

口試委員會審定書 i
Acknowledge ii
摘要 iii
Abstract iv
Figure List vii
Table List xvi
Chapter 1 Introduction 1
Chapter 2 Experimental setup 15
2.1 Experiment set up 16
2.2 Experiment condition 26
2.3 Experiment Procedure 38
2.4 Repeatability and scaling 42
Chapter 3 Experimental Analysis Method 45
3.1 Velocity tracking 46
3.2 Slow translating scan of stationary deposit 55
3.3 Stationary scan of unsteady surge passage 63
3.4 Fast rotating scan of unsteady flow past canyon fan transition 66
3.5 Velocity field in image plane transform to surface velocity field 85
Chapter 4 Channelized experiment results 90
4.1 Calibration experiment results 91
4.2 Canyon-fan transition experiment results in channel 96
4.3 Kinematic wave theory 106
4.4 Compare the experiment results with field 119
Chapter 5 Canyon-fan transition experimental results 122
5.1 Surface deformation 123
5.2 Surface velocity field 125
5.3 Influence of coarse particle content 133
5.4 Influence of water content 147
5.5 Comparison and discussion 157
Chapter 6 Conclusion 167
Reference 172


Berzi, D., and Jenkins, J.T. (2008) A theoretical analysis of free-surface flows of saturated granular-liquid mixtures. J. Fluid Mech. 608, 393-410.
Capart, H., Young, D. L., Zech, Y. (2002) Voronoi imaging methods for the measurement of granular flows. Exp. Fluids 32, 121-135.
Chi, T. A. (2007), Laser halo measurements of solid-liquid two phase flows, M. S. thesis, Graduate Institute of Civil Engineering, National Taiwan University.
da Cruz, F., Emam, S., Prochnow, M., Roux, J.N., and Chevoir, F. (2005) Rheophysics of dense granular materials: Discrete simulation of plane shear flows. Phys. Rev. E 72, 021309.
GDR Midi (2004) On dense granular flows. Eur. Phys. J. E 14, 341-365.
Huang, A. Y. L., Huang, M. Y. F., Capart, H., Chen, R. H. (2008) Optical measurement of pore geometry and fluid velocity in a bed of irregularly packed spheres. Exp. Fluids 45, 309-321.
Hunt, B.(1982), Asymptotic solution for dam-break problem, Journal of the Hydraulics Division 108(1),115-126
Iverson, R.M., Costa J.E., LaHusen R.G. (1992), USGS Open-File Report,92-483
Jahne, B. (1995) Digital image processing. Springer-Verlag.
Ke, W. T. (2005) Formation of symmetrically palmated deltas: shallow flow computations and experimental study, M. S. thesis, Department of Civil Engineering, National Taiwan University.
Major, J. J. (1997) Depositional Processes in Large-Scale Debris-Flow Experiments The Journal of Geology, 105 (3), 345-366.
Jop, P., Forterre, Y., and Pouliquen, O. (2005) Crucial role of sidewalls in dense granular flows: consequences for the rheology. J. Fluid Mech. 541, 167-192.
Ai, Y.A. (2008) A study on the motion and rheological parameters of mud flow in rotating viscometer, MSc thesis, Department of Civil Engineering, National Taiwan University..
Ni, W. J. (2005) Groundwater drainage and recharge by geomorphically active gullies., MSc thesis, Department of Civil Engineering, National Taiwan University.
Wei, Y.F.(2006) Deformation Behavior of Different Overburden during the Thrust Fault., MSc thesis, Department of Civil Engineering, National Taiwan University.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top