跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.152) 您好!臺灣時間:2025/11/04 05:20
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:嚴建隆
研究生(外文):Chien-Lung Yen
論文名稱:高鉻白口鑄鐵及多元合金白口鑄鐵之耐磨耗性研究
論文名稱(外文):Research on the Wear-Resistance of High-Chromium White Cast Iron and Multi-component White Cast Iron
指導教授:潘永寧
口試委員:林招松楊榮顯邱弘興許正勳
口試日期:2013-07-29
學位類別:博士
校院名稱:國立臺灣大學
系所名稱:機械工程學研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2013
畢業學年度:101
語文別:中文
論文頁數:122
中文關鍵詞:高鉻白口鑄鐵多元合金白口鑄鐵相圖
外文關鍵詞:High chromium white cast ironmulti-component white cast ironphase diagrams
相關次數:
  • 被引用被引用:1
  • 點閱點閱:395
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究針對高鉻白口鑄鐵及多元合金白口鑄鐵兩組最佳條件(包含合金成份及熱處理條件),經過Pin-on-Disk磨耗測試和固體顆粒沖蝕磨耗試驗比較其耐磨耗性。另,針對高鉻白口鑄鐵及多元合金白口鑄鐵之合金元素種類及成份對於鑄造狀態及經熱處理後之顯微組織有密切的關係,並直接影響其耐磨耗性。
研究結果顯示;高鉻白口鑄鐵試片之磨耗損失與測試時間大致呈一線性關係,試片之表面有明顯之深刻痕,且多處嚴重挖空剝離現象。觀察淬火材料與回火材料經沖蝕後之次表面形貌,前者之凹坑約4.5~8.0mm較後者深。經淬火處理之材料經過沖蝕後,麻田散鐵晶界產生明顯的裂痕,隨後沖蝕整區剝落,破裂路徑沿著麻田散鐵晶界向內延伸至碳化物。經回火處理之材料經過沖蝕後,殘留沃斯田鐵會變態為回火麻田散鐵,使得材料之韌性提升,而較能抵抗衝擊所產生的裂痕生長,破裂僅發生在凹坑區,並無向下延伸之跡象。多元合金白口鑄鐵試片之磨耗損失與測試時間大致呈一非線性關係。試片之表面呈現淺刻痕現象,沖蝕次表面形貌觀察回火材料凹坑較淺約4mm,回火處理沖蝕後,回火溫度570°C雖降低合金硬度,但組織較粗大,能抵抗延性的破壞,因為W的含量較低(2.15%),使得二次碳化物析出量較少,故二次碳化物之空孔也較少,顯示其較能抵抗脆性破壞,破裂路徑不明顯,僅在凹坑區,並無向下延伸之跡象。
為了使高鉻白口鑄鐵及多元合金白口鑄鐵之運用更為廣泛,相圖的建立有其必要性,因此本研究利用商用軟體Thermo Calc,繪製不同合金組成之高鉻白口鑄鐵及多元合金白口鑄鐵的相圖,同時以所設計合金,取樣進行熱分析(高溫DSC),並藉由熱分析所量測之相變化溫度點,來與所模擬之相圖相互印證。模擬結果顯示:高鉻白口鑄鐵與多元合金白口鑄鐵之熱分析量測所得到之相變化溫度點與所模擬之相圖的相變化點是符合的。
關鍵字:高鉻白口鑄鐵、多元合金白口鑄鐵、相圖


This research studied the difference of wear resistance between high chromium white cast iron and multi-component white cast iron under two optimum conditions (including optimal alloy composition and optimal heat treatment) by using Pin-On-Disk wear test and solid particle erosion test. The composition of cast iron has a close relationship with its phase change of mold status and it directly influences its wear resistance and erosion properties.
The test results found that wear resistance of high chromium white cast iron has linear relationship with testing time. There were obvious scratching grooves on the surface of specimen and various sheared pits. The depth of pits is about 4.5~8.0 mm by observing its sub surface. Crack deformation path after quenching was observed clearly at the martensite crystalline grain boundaries .After tempering treatment, Toughness was increased by changing its state to tempered martensite. Tempered martensite has a better resistance toward the formation of crack. The deformation path occurs only along the martensite grain boundaries and has no any sign of spreading .On the other hand , the wear resistance of multi-component white cast iron showed non-linear relationship with testing time. There were obvious shallow scratches on the surface of specimen. The depth of pits is about 4.0 mm by observing its sub surface. After tempering (570¬oC) and erosion treatment, the hardness of alloy was lowered, however, the larger matrix, is able to resist ductile fracture. As the amount of tungsten (W) is low (2.15%), thus the amount of secondary carbide separated out is not much. It implies that the amount of hole on the surface of secondary carbide is smaller and able to resist brittle fracture. Therefore, no obvious deformation path was observed. The deformation path occurs only in crater region and has no any sign of spreading.
The establishment of phase diagram is important in expand the application scope of high chromium white cast iron and multi-component white cast iron. Thus , we have conducted high temperature differential scanning calorimeter (DSC) using a sample from our designated alloy and measured the temperature point of phase change using thermal analysis .The experimental results are also consistent with the simulation results by commercial software Thermo Calc.

Keywords:High chromium white cast iron, multi-component white cast iron, phase diagrams.


致謝 ii
摘要 iv
Abstract v
目錄 vii
表目錄 xi
圖目錄 xii
第一章 前言 1
第二章 文獻回顧 2
2.1 高鉻白口鑄鐵 2
2.1.1前言 2
2.1.2合金元素之影響 3
2.1.3碳化物種類 5
2.1.4凝固組織 7
2.1.5熱處理製程 8
2.2 多元合金白口鑄鐵 9
2.2.1前言 9
2.2.2合金元素之影響 10
2.2.3碳化物種類 11
2.2.4凝固組織 13
2.2.5熱處理製程 14
2.3 磨耗破壞機制與影響因素 14
2.3.1刮磨磨耗 14
2.3.2沖蝕磨耗 15
2.3.2.1 沖蝕機制 15
2.3.2.1.1 切削 15
2.3.2.1.2 變形 17
2.3.2.1.3 疲勞 19
2.3.2.1.4 表面裂痕 19
2.3.2.2 影響沖蝕的因素 20
2.4 相圖原理與方法 22
2.4.1相圖定義 22
2.4.2相圖的發展歷程 22
2.4.3相圖的原理 23
2.4.4相圖的熱力學 26
2.4.5 Thermo-Calc. 程序 27
第三章 實驗設計與方法 43
3.1 耐磨耗性 43
3.1.1實驗設計 43
3.1.2顯微組織觀察與硬度分析 43
3.1.2.1顯微組織觀察 43
3.1.2.2碳化物體積分率計算 44
3.1.2.3殘留沃斯田鐵量分析 44
3.1.2.4硬度測試 44
3.1.3 Pin-on-Disk耐磨耗測試 44
3.1.4固體顆粒沖蝕磨耗試驗 44
3.1.4.1沖蝕試驗裝置 44
3.1.4.2沖蝕試驗參數 45
3.1.4.3沖蝕照相觀察 45
3.1.4.4沖蝕次表面觀察 45
3.2 相圖模擬 45
3.2.1實驗流程 45
3.2.2合金組成 45
3.2.3高溫DSC分析 46
3.2.4模擬 46
第四章 結果與討論 52
4.1 高鉻白口鑄鐵 52
4.1.1熱處理對顯微組織之影響 52
4.1.2合金成份對淬火後之顯微組織、硬度及沖蝕性之影響 53
4.1.2.1 淬火後對不同角度之沖蝕率與沖蝕深度之影響 53
4.1.2.2 固定Cr下,不同C含量之影響 53
4.1.2.3在共晶組成下,不同Cr/C比之影響 53
4.1.2.4在亞共晶組成下,不同Cr/C比之影響 54
4.1.2.5固定3%C與16%Cr下,Mo含量之影響 54
4.1.2.6固定2.6%C與26%Cr下,Mo含量之影響 54
4.1.3合金成份對回火後之顯微組織、硬度及沖蝕性之影響 54
4.1.3.1回火後對不同角度之沖蝕率與沖蝕深度之影響 54
4.1.3.2固定Cr下,不同C含量之影響 55
4.1.3.3在共晶組成下,不同Cr/C比之影響 55
4.1.3.4在亞共晶組成下,不同Cr/C比之影響 55
4.1.3.5固定3%C與16%Cr下,Mo含量之影響 55
4.1.3.6固定2.6%C與26%Cr下,Mo含量之影響 55
4.1.4熱處理對沖蝕率與沖蝕深度之影響 55
4.1.5不同回火溫度對硬度及沖蝕性之影響 56
4.2多元合金白口鑄鐵 56
4.2.1熱處理對顯微組織之影響 56
4.2.2硬度值 57
4.2.3合金成份對淬火態耐沖蝕性之影響 58
4.2.4合金成份及回火處理耐沖蝕性之影響 58
4.2.5沖蝕表面與次表面破壞形貌之觀察 59
4.3比較高鉻白口鑄鐵與多元合金白口鑄鐵之耐磨耗性 60
4.3.1刮磨特性 60
4.3.2沖蝕磨耗特性 61
4.4 相圖模擬 61
4.4.1 DSC熱分析 61
4.4.2相圖 61
第五章 結論 113
5.1 耐磨耗性 113
5.2 相圖模擬 114
參考文獻 115


[1]Kenneth G. Budinski, Engineering materials: properties and selection, 3rd ed, prentice hall, Englewood Cliffs, New Jersey, pp. 447-448,1989.
[2]M.Hashimoto, O. Kubo and Y. Matsubara, “Analysis of carbides in multi-component white cast iron”, Journal of Japan Foundry Engineering Society, Vol. 75, pp. 317-324, 2003.
[3]Y. Matsubara, Y. Yokomizo, N.Sasaguri and M. Hashimoto, “Effect of carbon content and heat-treating condition on retained austenite and hardness of Multi-component white cast iron casting”, Journal of Japan Foundry Engineering Society, Vol. 72, pp. 471-477,2000.
[4]R.W Durman,"The application of alloyed white cast irons in crushing, grinding and material handling process", British Foundry Man,69, pp.141-149, 1976.
[5]呂傳盛,"高鉻鑄鐵微觀組織與常溫、高溫機械性質之關係",鑄工46期,pp.25-34,1985。
[6]張柳春,"10至25碳化物體機率高鉻白鑄鐵之衝擊與磨料磨耗特性研究",成大碩士論文, pp.1-14,1989。
[7]T. A. Adler and O. N. Dogan, "Erosive wear and impact damage of high-chromium white cast irons" , Wear, vol. 225-229, pp. 174-180,1999.
[8]R.W. Durman, "Basic metallurgical concepts and the mechanical testing of some abrasion-resistant alloy", Journal Foundry Trade, pp.645-651, May24 , 1973.
[9]T. Zhang and D. Y. Li, "Effect of alloy yttrium on corrosion-erosion behavior of 27 Cr cast white iron in different corrosive slurries", Materials Science and Engineering , A 325,pp.87-97,2002.
[10]陳錦修,翁文宏,陳立輝,呂傳盛,"波來鐵基地相18Cr.2.9C.0.85Si高鉻白鑄鐵之碳化矽磨料磨耗",鑄工56,pp1-6,1988。
[11]H. Zum and Gahr, Wear 64,pp.175-194,1980.
[12]C. D. Lundin, K. K. Khan and D. Yang, "Effect of carbon migration in Cr-Mo weldments on metallurgical structure and mechanical properites", Welding Research Council Bulletin, vol. 407, pp.1-49, 1995.
[13]F. Maratray, "Choice of appropriate compositions for Cr-Mo white iron", AFS Transactions, vol. 79, pp. 121-124, 1971.
[14]S. Inthidech, "Effect of alloying elements on heat treatment behavior of hypoeutectic high chromium cast iron", Materials Transactions, vol. 47, pp.72-81, Jan 2006.
[15]H. Q. Wu, N. Sasaguri, Y. Matsubara and M. Hashimoto, "Solidification of multi-alloyed white cast iron: type and morphology of carbides", AFS Transactions, vol. 104, pp. 103-108, 1996.
[16]R. A. Stevens and P. E. J. Flewitt, "Effect of phosphorus on the microstructure and creep properties of 2.25%Cr-1%Mo Steel", Acta Metallurgica, vol. 34, pp. 849-866, 1986.
[17]J. Yu and C. J. McMahon, "Effects of composition and carbide precipitation on temper embrittlement of 2.25%Cr-1%Mo steel — effects of Mn and Si", Metallurgical Transactions A, vol. 11A, pp. 291-300, 1980.
[18]J. J. Lewandowski, C. A. Hippsley and J. F. Knott, "Effects of impurity segregation and test environment on sustained load cracking of 2.25%Cr-1%Mo steel", ActaMaterialia, vol. 35, pp. 2081-2090, 1987.
[19]N. V. Tich, Doan Dinh Phuong, Phan Anh Tu and Hoang Thi Binh, "Selecting the composition and microstructure of Fe-Cr-C alloys working in different abrasion-corrosion media of mine slurry", Proceedings of the 9th Asian Foundry Congress, pp. 291-296, October 15-18 2005.
[20]R. E. Reed-Hill, "Physical metallurgy principles", pp. 593-599, 1992.
[21]L. Nastac and D. M. Stefanescu, "Prediction of gray-to-white transition in cast iron by solidification modeling", AFS Transactions, vol. 103, pp. 329-337, 1995.
[22]J. T. H. Pearce, T. Chairuangsri and A. Wiengmoon, “Variation in the As-Cast Microstructure of 2.3%C-30% Cr Iron ”, Proceedings of the 9th Asian Foundry Congress-Hanoi, Vietnam Foundry and Metallurgy Sci. & Tech. Association, pp. 303-311, October 15-18, 2005.
[23]A. E. Karantzalis, "Microstructural modifications of As-Cast high-chromium white iron by heat treatment", Journal of Materials Engineering and Performance, vol. 18, pp. 174-181, Mar 2009.
[24]G. L. F. Powell, "Morphology of eutectic M3C and M7C3 in white cast iron casting", Metals Forum, vol. 3, pp. 37-46, 1980.
[25]S. B. Biner, "The role of eutectic carbide morphology on the fracture behavior of high chromium cast irons--austenitic alloy",Canandian Metallurgical Quarterly,Vol.24,pp.155-162,1985.
[26]G. Laird II, "Microstructures of Ni-hard I, Ni-hard IV and high-Cr white cast iron", AFS Transactions, vol. 99, pp. 339-357, 1991.
[27]F. Maratray and A. Poulalion, "Austenite retention in high-chromium white irons", AFS Transactions, vol. 90, pp. 795-804, 1982.
[28]Graham Powell, “Improved Wear-resistant High-alloyed White Irons – A Historical Perspective”, International Congress on Abrasion Wear Resistant Alloyed White Cast Iron for Rolling and Pulverizing Mills, Fukuoka, Japan, pp. 1-10, August 16-20, 2002.
[29]T. Lyman, "Metallography structures and phase diagrams", Metals handbook, vol. 8, pp. 404, 1964.
[30]A. Sinatora, "Eutectic nucleation of high chromium cast irons", Journal of Japan Foundry Engineering Society, pp. 23-31, 2002.
[31]R. Correa, "Effect of boron on the sliding wear of directionally solidified high-chromium white irons", Wear, vol. 267, pp. 495-504, 2009.
[32]Y. H. Qu, "Effect of cerium on the as-cast microstructure of a hypereutectic high chromium cast iron", Materials Letters, vol. 62, pp. 3024-3027, 2008.
[33]C.-M. Chang, "Effect of carbon content on microstructural characteristics of the hypereutectic Fe-Cr-C claddings", Materials Chemistry and Physics, vol. 117, pp. 257-261, 2009.
[34]E. Bullock, M. McLean and J. D. Livingston, "The effect of grain growth in solidification parameter", Acta Metall, Vol.25,pp.328-333, 1977.
[35]J.A. Hawk, "Effect of carbide orientation on abrasion of high Cr white cast iron", Wear189, pp.136-142, 1995.
[36]L. M. Lu, "Microstructure and mechanical properties of Fe-Cr-C eutectic composites", Materials Science and Engineering A-Structural Materials Properties Microstructure and Processing, vol. 347, pp. 214-222, Apr 2003.
[37]C. P. Tabrett and I. R. Sare, "The effect of heat treatment on the abrasion resistance of alloy white irons" , Wear, vol. 203-204, pp. 206-219, 1997.
[38]J. Wang, "The precipitation and transformation of secondary carbides in a high chromium cast iron", Materials Characterization, vol. 56, pp. 73-78, 2006.
[39]X. Zhi, "Effect of heat treatment on microstructure and mechanical properties of a Ti-bearing hypereutectic high chromium white cast iron", Materials Science and Engineering: A, vol. 487, pp. 171-179, 2008.
[40]S. Inthidech, "Heat treatment behavior of high chromium cast iron for abrasive wear resistance", Abrasion, pp. 159-169, 2008.
[41]H.L.Ge, W.V. Youdelis and G.L. Chen, "Effect of interfacial segregation of magnesium on high carbon (18%Cr) cast steel", Materials Science and Technology ,vol. 5, pp. 1207-1211, December ,1989.
[42]M. Hashimoto, "Influence of carbon and chromium on mechanical and hot wear properties of multi-component white cast irons for steel rolling mill rolls" ,Journal of Japan Foundry Engineering Society, vol. 79, pp. 23-29, 2007.
[43]M. Kuwano, K. Ogi, "Studies on precipitation process of secondary carbides in high chromium cast iron", AFS Transaction 1990, vol. 166, pp. 725-734.
[44]N. Sasaguri, Y. Matsubara and H. Q. Wu, "Solidification and phase diagram of multi-component white cast iron", Proceedings of the international congress on abrasion wear resistant alloyed white cast iron for rolling and pulverizing mill, pp.167-183, Fukuoka, Japan, 16-20, August, 2002.
[45]N. Sasaguri, M. Hashimoto and Y. Matsubara, "The history and development of cast rolls for hot working mill", Proceedings of the 4th Asian Foundry Congress, pp.251-261, Queensland, Australia, 27-31, October, 1996.
[46]M. Hashimoto, "Development and application of multi-component white cast iron rolls in hot and cold rolling mills", Proceedings of The International Congress On Abrasion Wear Resistant Alloyed White Cast Iron For Rolling and Pulverizing Mill, Fukuoka, Japan, pp.195-206, 16-20,August, 2002.
[47]W.S. Chang, "Study on the optimal heat treatment conditions and wear resistance property of high-Cr cast iron and multi-component white cast irion", M.S. Thesis, National Taiwan University, 2008.
[48]M. Hashimoto, Y. Nishiyama, N. Sasaguri and Y. Matsubara, "Influence of carbon and vanadium on mechanical and hot wear properties of multi-component white cast irons for steel rolling mill rolls", Journal of Japan Foundry Engineering Society, vol. 78, pp. 238-244, 2006.
[49]M. Hashimoto, Y. Nishiyama, N. Sasaguri and Y. Matsubara, "Influence of carbon and molybdenum on mechanical and hot wear properties of multi-component white cast irons for steel rolling mill rolls", Journal of Japan Foundry Engineering Society, vol. 79, pp. 650-655, 2007.
[50]M. Hashimoto, Y. Nishiyama, N. Sasaguri and Y. Matsubara, "Influence of carbon and tungsten on mechanical and hot wear properties of multi-component white cast irons for steel rolling mill rolls", Journal of Japan Foundry Engineering Society, vol. 79, pp. 732-737, 2007.
[51]李驊登, "鋼鐵材料學講義" ,國立成功大學機械系, 2005。
[52]M. X. Zhang, "The effect of heat treatment on the toughness hardness and microstructure of low carbon white cast iron", J. of Materials science, vol. 36, pp. 3865-3875, 2001.
[53]曹麗, "中國刀具信息網" ,18 ,April ,2010。
[54]K. Ogi, "Solidification of alloy white cast iron", Journal of Japan Foundry Engineering Society, vol. 66, pp. 764-771, 1994.
[55]K. G. Budinski, "Surface engineering for wear resistance", Prentice Hall, New Jersey, 1988.
[56]M. Hashimoto, O. Kubo, N. Sasaguri and Y. Matsubara, "Influence of Mo and W on morphology and alloy content of crystallized carbides in multi-component white cast iron", Journal of Japan Foundry Engineering Society, vol. 75, pp. 479-486, 2003.
[57]Y. Matsubara,"台灣大學演講資料",May,2004。
[58]R. L. Pattyn, "Heat treatment of high-Cr white irons", AFS Transactions, vol. 101, pp. 161-167, 1993.
[59]H. Sin, "Abrasive wear mechanisms and the grit size effect", Wear, vol. 55, pp. 163-190, 1979.
[60]ASM handbook, "Friction,lubrication, and wear technology", vol.18,pp.8, 1992.
[61]K.H. ZumGahr, "Microstructure and wear of materials", Tribology Series No 10, Elsevier, Amsterdam, pp.531-553,1987.
[62]J.G.A. Bitter, "A study of erosion phenomena part II", Wear, 6, pp.169-190, 1963.
[63]A. Magnee, "Generalized law of erosion: application to various alloys and intermetallics", Wear,181-183,pp.500-510,1995.
[64]I. Finnie, "Some observations on the erosion of ductile metals", Wear, 19, pp.81-90, 1972.
[65]I. Finnie, D.H. McFadden, "On the velocity dependence of the erosion of ductile metals by solid particles at low angles of incidence", Wear, 48, pp.181-190, 1978.
[66]Danian Chen,M. Sarumi , S.T.S. Al-Hassani,Su Gan,Zhihua Yin, “ A model for erosion at normal impact”, Wear ,205, pp. 32-39, 1997.
[67]J.G.A.Bitter, “A study of erosion phenomena part I”, Wear,6,pp.2-21,1963.
[68]Y.I. Oka, H. Oh no gi, T. Hosokawa, M. Matsumura, “The impact angle dependence of erosion damage caused by solid particle impact”, Wear,203-204,pp.573-579,1997.
[69]Robert Bellman, JR., Alan Levy, “Erosion mechanisms in ductile metals”, Wear, 70, pp.1-27, 1981.
[70]I. M. Hutchings, “A model for the erosion of metals by spherical particles at normal incidence”, Wear, 70,pp. 269-281,1981.
[71]P.J. Slikkerveer, P.C.P. Bouten, F.H. in’t Veld, H. Scholten, “Erosion and damage by sharp particles”, Wear, 217,pp. 237-250, 1998.
[72]M.A. Verspui, G. de With, A. Corbijin, P.J. Slikkerveer, “Simulation model for the erosion of brittle materials”, Wear, 233-235, pp.436-443,1999.
[73]K. Shimizu, T. Noguchi, T. Kamada, H. Takasaki, “Progress of erosion wear in spheroidal graphite cast iron”, Wear, 198, pp. 150-155, 1996.
[74]ASM handbook. “Friction, lubrication, and wear technology”, vol.18,pp.199-213,1992.
[75]Mauro Palumbo, Stefano Curiotto, Livio Battezzat, “Thermodynamics analysis of the stable and metastable Co-Cu and Co-Cu-Fe phase diagrams”, Computer Coupling of Phase Diagram and Thermochemistry 30,pp.171-178,2006.
[76]J.J. van Laar , Z. phys. Chem , “Phase equilibria “,63-64, pp. 216-297, 1908.
[77]J.L. Meijering, Philips Res. Rep., “Introduction to the thermodynamics of materials “,5-6,pp. 333-356 ,183-210,1950-1951.
[78]L. Kaufman and H. Berstein ; “Computer calculation of phase diagrams with special reference to refractory metals”, Academic Press, New York, 1970
[79]M. Hillert, “ Empirical-methods of predicting and representing thermodynamic properties of ternary solution phase”, Calphad-Computer Coupling of Phase Diagrams and Thermochemistry, Vol 4, Iss1,pp.1-12,1980.
[80]Hiroshi Ohtani, Maki Yamano, Mitsuhiro Hasebe : “Thermodynamic analysis of the Co-Al-C and Ni-Al-C systems by incorporating ab initio energetic calculations into the CALPHAD approach”, Computer Coupling of Phase Diagrams and Thermochemistry 28, pp.177-190, 2004.
[81]R. Q. Li, “The application of R function to new asymmetric model and toop model”, Calphad-Computer Coupling of Phase Diagrams and Thermochemistry, Vol 4, Iss 1,pp. 67-70,1980.
[82]R. Luck, U. Gerling and B. Predel, “ On the interpolation algorithms for thermodynamic functions of mixture in multi-component systems from binary boundary systems”, Zeitschrift fur Metallkunde, Vol 77, Iss 7, pp.442-448, 1986.
[83]Ursula R. Kattner, “ Thermodynamic calculations in quaternary transition –metal syatem“, JOM 49,pp.14-19, 1997.
[84]L. Battezzati,”Thermodynamics of undercooled melts and metastable phase-formation”, Materials Science and Engineering A-Structural Materials Properties Microstructure and Processing, Vol 178, Iss 1-2,pp. 43-49, 1994.
[85]ASTM designation G99-05, “Standard test method for wear testing with a Pin-on-Disk apparatus”, ASTM International, 100 Barr Harbor Drive, PO Box C700, Wear Conshohocken, PA 19428-2959, United States.
[86]http://www.thermocalc.com/index.html
[87]A.T.Dinsdale,“SGTE Data for Pure Elements”,CALPHAD,15(4),pp.317-425,1991.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top