|
Reference [1] S. Waldert, T. Pistohl, C. Braun, T. Ball, A. Aertsen, and C. Mehring, "A review on directional information in neural signals for brain-machine interfaces," Journal of Physiology-Paris, vol. 103, pp. 244-254, 2009. [2] Wikipedia, "Electrocorticography," 2016. [3] T. Zama and S. Shimada, "Simultaneous measurement of electroencephalography and near-infrared spectroscopy during voluntary motor preparation," Scientific reports, vol. 5, 2015. [4] B. Klassen, J. Hentz, H. Shill, E. Driver-Dunckley, V. Evidente, M. Sabbagh, et al., "Quantitative EEG as a predictive biomarker for Parkinson disease dementia," Neurology, vol. 77, pp. 118-124, 2011. [5] Wikipedia. (2016). Intraoperative neurophysiological monitoring Available: https://en.wikipedia.org/wiki/Intraoperative_neurophysiological_monitoring [6] A. N. Almeida, V. Martinez, and W. Feindel, "The first case of invasive EEG monitoring for the surgical treatment of epilepsy: historical significance and context," Epilepsia, vol. 46, pp. 1082-1085, 2005. [7] J. Howick, B. A. Cohen, P. McCulloch, M. Thompson, and S. A. Skinner, "Foundations for evidence-based intraoperative neurophysiological monitoring," Clinical Neurophysiology, vol. 127, pp. 81-90, 2016. [8] S.-M. Kim, S. H. Kim, D.-W. Seo, and K.-W. Lee, "Intraoperative neurophysiologic monitoring: basic principles and recent update," Journal of Korean medical science, vol. 28, pp. 1261-1269, 2013. [9] P. M. Arenth, J. H. Ricker, and M. T. Schultheis, "Applications of functional near-infrared spectroscopy (fNIRS) to neurorehabilitation of cognitive disabilities," The Clinical Neuropsychologist, vol. 21, pp. 38-57, 2007. [10] M. Mihara and I. Miyai, "Review of functional near-infrared spectroscopy in neurorehabilitation," Neurophotonics, vol. 3, pp. 031414-031414, 2016. [11] J. Dauwels, F. Vialatte, and A. Cichocki, "Diagnosis of Alzheimer's disease from EEG signals: where are we standing?," Current Alzheimer Research, vol. 7, pp. 487-505, 2010. [12] S. Smith, "EEG in the diagnosis, classification, and management of patients with epilepsy," Journal of Neurology, Neurosurgery & Psychiatry, vol. 76, pp. ii2-ii7, 2005. [13] N. Naseer and K.-S. Hong, "fNIRS-based brain-computer interfaces: a review," Frontiers in human neuroscience, vol. 9, p. 3, 2015. [14] I. Šuškevičienė, D. ČeslavaRugytė, T. Bukauskas, A. Vilkė, D. Bilskienė, and A. Macas, "Near-infrared spectroscopy in newborns and infants under general anesthesia," Acta medica Lituanica, vol. 19, 2012. [15] K. Caeyenberghs, N. Wenderoth, B. Smits-Engelsman, S. Sunaert, and S. Swinnen, "Neural correlates of motor dysfunction in children with traumatic brain injury: exploration of compensatory recruitment patterns," Brain, vol. 132, pp. 684-694, 2009. [16] A. E. Bond, G. Zada, A. A. Gonzalez, C. Hansen, and S. L. Giannotta, "Operative strategies for minimizing hearing loss and other major complications associated with microvascular decompression for trigeminal neuralgia," World neurosurgery, vol. 74, pp. 172-177, 2010. [17] K. G. Jordan, "Continuous EEG monitoring in the neuroscience intensive care unit and emergency department," Journal of clinical neurophysiology, vol. 16, pp. 14-39, 1999. [18] R. J. Andrews, Intraoperative neuroprotection: Lippincott Williams & Wilkins, 1996. [19] Wikipedia. (2016). Electrocorticography. Available: https://en.wikipedia.org/wiki/Electrocorticography [20] E. Niedermeyer and F. L. da Silva, Electroencephalography: basic principles, clinical applications, and related fields: Lippincott Williams & Wilkins, 2005. [21] T. M. P. V. Lab. (2016). Biomedical Signals Acquisition. Available: https://www.medicine.mcgill.ca/physio/vlab/biomed_signals/eeg_n.htm [22] Wikipedia. (2016). 10-20 system (EEG). Available: https://en.wikipedia.org/wiki/10-20_system_(EEG) [23] N. Jatupaiboon, S. Pan-ngum, and P. Israsena, "Real-time EEG-based happiness detection system," The Scientific World Journal, vol. 2013, 2013. [24] F. Sharbrough, G. Chatrian, R. Lesser, H. Lüders, M. Nuwer, and T. Picton, "American Electroencephalographic Society guidelines for standard electrode position nomenclature," J. clin. Neurophysiol, vol. 8, pp. 200-202, 1991. [25] C. S. Roy and C. S. Sherrington, "On the regulation of the blood-supply of the brain," The Journal of physiology, vol. 11, p. 85, 1890. [26] D. Hueber, M. Franceschini, H. Ma, Q. Zhang, J. Ballesteros, S. Fantini, et al., "Non-invasive and quantitative near-infrared haemoglobin spectrometry in the piglet brain during hypoxic stress, using a frequency-domain multidistance instrument†," Physics in medicine and biology, vol. 46, p. 41, 2001. [27] V. Bari, P. Calcagnile, E. Molteni, R. Re, D. Contini, L. Spinelli, et al., "Study of neurovascular and autonomic response in a divided attention test by means of EEG, ECG and NIRS signals," in 2011 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 2011, pp. 1403-1406. [28] T. Jue and K. Masuda, Application of near infrared spectroscopy in biomedicine: Springer, 2013. [29] F. F. Jobsis, "Noninvasive, infrared monitoring of cerebral and myocardial oxygen sufficiency and circulatory parameters," Science, vol. 198, pp. 1264-1267, 1977. [30] J. Murkin and M. Arango, "Near-infrared spectroscopy as an index of brain and tissue oxygenation," British journal of anaesthesia, vol. 103, pp. i3-i13, 2009. [31] I.-Y. Son and B. Yazici, "Near infrared imaging and spectroscopy for brain activity monitoring," in Advances in Sensing with Security Applications, ed: Springer, 2006, pp. 341-372. [32] M. Ferrari, I. Giannini, G. Sideri, and E. Zanette, "Continuous non invasive monitoring of human brain by near infrared spectroscopy," in Oxygen Transport to Tissue VII, ed: Springer, 1985, pp. 873-882. [33] B. Chance, Z. Zhuang, C. UnAh, C. Alter, and L. Lipton, "Cognition-activated low-frequency modulation of light absorption in human brain," Proceedings of the National Academy of Sciences, vol. 90, pp. 3770-3774, 1993. [34] S. Coyle, T. Ward, C. Markham, and G. McDarby, "On the suitability of near-infrared (NIR) systems for next-generation brain–computer interfaces," Physiological measurement, vol. 25, p. 815, 2004. [35] D. Choi, Y. Ryu, Y. Lee, and M. Lee, "Performance evaluation of a motor-imagery-based EEG-Brain computer interface using a combined cue with heterogeneous training data in BCI-Naive subjects," Biomedical engineering online, vol. 10, p. 1, 2011. [36] R. J. Barry, A. R. Clarke, S. J. Johnstone, C. A. Magee, and J. A. Rushby, "EEG differences between eyes-closed and eyes-open resting conditions," Clinical Neurophysiology, vol. 118, pp. 2765-2773, 2007. [37] J. Zhang, X. Yu, and D. Xie, "Effects of mental tasks on the cardiorespiratory synchronization," Respiratory physiology & neurobiology, vol. 170, pp. 91-95, 2010. [38] G. Sammer, C. Blecker, H. Gebhardt, M. Bischoff, R. Stark, K. Morgen, et al., "Relationship between regional hemodynamic activity and simultaneously recorded EEG‐theta associated with mental arithmetic‐induced workload," Human brain mapping, vol. 28, pp. 793-803, 2007. [39] L. Braadbaart, J. H. Williams, and G. D. Waiter, "Do mirror neuron areas mediate mu rhythm suppression during imitation and action observation?," International Journal of Psychophysiology, vol. 89, pp. 99-105, 2013. [40] L. P. Safonova, A. Michalos, U. Wolf, J. H. Choi, M. Wolf, W. W. Mantulin, et al., "Diminished cerebral circulatory autoregulation in obstructive sleep apnea investigated by near-infrared spectroscopy," Sleep Res Online, vol. 5, pp. 123-32, 2003. [41] G. Bauernfeind, R. Leeb, S. C. Wriessnegger, and G. Pfurtscheller, "Development, set-up and first results for a one-channel near-infrared spectroscopy system/Entwicklung, Aufbau und vorläufige Ergebnisse eines Einkanal-Nahinfrarot-Spektroskopie-Systems," Biomedizinische Technik, vol. 53, pp. 36-43, 2008. [42] G. Strangman, J. P. Culver, J. H. Thompson, and D. A. Boas, "A quantitative comparison of simultaneous BOLD fMRI and NIRS recordings during functional brain activation," Neuroimage, vol. 17, pp. 719-731, 2002. [43] T. Murta, M. Leite, D. W. Carmichael, P. Figueiredo, and L. Lemieux, "Electrophysiological correlates of the BOLD signal for EEG‐informed fMRI," Human brain mapping, vol. 36, pp. 391-414, 2015. [44] P. T. F. E. RAICHLE and M. A. MINTUN, "Nonoxidative glucose consumption during focal physiologic neural activity," Cell Biol, vol. 102, p. 2076, 1986. [45] R. B. Buxton, "Dynamic models of BOLD contrast," Neuroimage, vol. 62, pp. 953-961, 2012. [46] K. Uludağ, B. Müller-Bierl, and K. Uğurbil, "An integrative model for neuronal activity-induced signal changes for gradient and spin echo functional imaging," Neuroimage, vol. 48, pp. 150-165, 2009. [47] P. A. Valdes‐Sosa, J. M. Sanchez‐Bornot, R. C. Sotero, Y. Iturria‐Medina, Y. Aleman‐Gomez, J. Bosch‐Bayard, et al., "Model driven EEG/fMRI fusion of brain oscillations," Human brain mapping, vol. 30, pp. 2701-2721, 2009. [48] Wikipedia. (2016). Single-unit recording. Available: https://en.wikipedia.org/wiki/Single-unit_recording [49] R. M. Dowben and J. E. Rose, "A metal-filled microelectrode," Science, vol. 118, pp. 22-24, 1953. [50] G. Ettisch and T. Peterfi, "Zur Methodik der Elektrometrie der Zelle," Pflügers Archiv European Journal of Physiology, vol. 208, pp. 454-466, 1925. [51] J. Green, "A simple microelectrode for recording from the central nervous system," 1958. [52] F. López-Muñoz, J. Boya, and C. Alamo, "Neuron theory, the cornerstone of neuroscience, on the centenary of the Nobel Prize award to Santiago Ramón y Cajal," Brain research bulletin, vol. 70, pp. 391-405, 2006. [53] M. A. Nicolelis, D. Dimitrov, J. M. Carmena, R. Crist, G. Lehew, J. D. Kralik, et al., "Chronic, multisite, multielectrode recordings in macaque monkeys," Proceedings of the National Academy of Sciences, vol. 100, pp. 11041-11046, 2003. [54] H. Super and P. R. Roelfsema, "Chronic multiunit recordings in behaving animals: advantages and limitations," Progress in brain research, vol. 147, pp. 263-282, 2005. [55] A. C. Hoogerwerf and K. D. Wise, "A three-dimensional microelectrode array for chronic neural recording," IEEE Transactions on Biomedical Engineering, vol. 41, pp. 1136-1146, 1994. [56] R. A. Normann, E. M. Maynard, P. J. Rousche, and D. J. Warren, "A neural interface for a cortical vision prosthesis," Vision research, vol. 39, pp. 2577-2587, 1999. [57] R. A. Normann and E. Fernandez, "Clinical applications of penetrating neural interfaces and Utah Electrode Array technologies," Journal of Neural Engineering, vol. 13, p. 061003, 2016. [58] Y. Yao, M. N. Gulari, J. A. Wiler, and K. D. Wise, "A microassembled low-profile three-dimensional microelectrode array for neural prosthesis applications," Journal of microelectromechanical systems, vol. 16, pp. 977-988, 2007. [59] S. Spieth, O. Brett, K. Seidl, A. Aarts, M. Erismis, S. Herwik, et al., "A floating 3D silicon microprobe array for neural drug delivery compatible with electrical recording," Journal of Micromechanics and Microengineering, vol. 21, p. 125001, 2011. [60] M.-Y. Cheng, M. Je, K. L. Tan, E. L. Tan, R. Lim, L. Yao, et al., "A low-profile three-dimensional neural probe array using a silicon lead transfer structure," Journal of Micromechanics and Microengineering, vol. 23, p. 095013, 2013. [61] W. Pei, H. Zhao, S. Zhao, X. Fang, S. Chen, Q. Gui, et al., "Silicon-based wire electrode array for neural interfaces," Journal of Micromechanics and Microengineering, vol. 24, p. 095015, 2014. [62] P. J. Rousche and R. A. Normann, "A method for pneumatically inserting an array of penetrating electrodes into cortical tissue," Annals of biomedical engineering, vol. 20, pp. 413-422, 1992. [63] G. Márton, G. Orbán, M. Kiss, R. Fiáth, A. Pongrácz, and I. Ulbert, "A Multimodal, SU-8-Platinum-Polyimide Microelectrode Array for Chronic In Vivo Neurophysiology," PloS one, vol. 10, p. e0145307, 2015. [64] Z. Xiang, J. Liu, and C. Lee, "A flexible three-dimensional electrode mesh: An enabling technology for wireless brain–computer interface prostheses," Microsystems & Nanoengineering, vol. 2, 2016. [65] B. Rubehn, C. Bosman, R. Oostenveld, P. Fries, and T. Stieglitz, "A MEMS-based flexible multichannel ECoG-electrode array," Journal of neural engineering, vol. 6, p. 036003, 2009. [66] E. Tolstosheeva, V. Gordillo-González, V. Biefeld, L. Kempen, S. Mandon, A. K. Kreiter, et al., "A Multi-Channel, Flex-Rigid ECoG Microelectrode Array for Visual Cortical Interfacing," Sensors, vol. 15, pp. 832-854, 2015. [67] D.-H. Baek, C.-H. Han, H.-C. Jung, S. M. Kim, C.-H. Im, H.-J. Oh, et al., "Soldering-based easy packaging of thin polyimide multichannel electrodes for neuro-signal recording," Journal of Micromechanics and Microengineering, vol. 22, p. 115017, 2012. [68] Y. X. Kato, S. Furukawa, K. Samejima, N. Hironaka, and M. Kashino, "Photosensitive-polyimide based method for fabricating various neural electrode architectures," Frontiers in neuroengineering, vol. 5, 2012. [69] P. Ledochowitsch, R. Félus, R. Gibboni, A. Miyakawa, S. Bao, and M. Maharbiz, "Fabrication and testing of a large area, high density, parylene MEMS µECoG array," in Micro Electro Mechanical Systems (MEMS), 2011 IEEE 24th International Conference on, 2011, pp. 1031-1034. [70] P. Ledochowitsch, E. Olivero, T. Blanche, and M. M. Maharbiz, "A transparent μECoG array for simultaneous recording and optogenetic stimulation," in 2011 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 2011, pp. 2937-2940. [71] L. Muller, S. Felix, K. G. Shah, K. Lee, S. Pannu, and E. F. Chang, "Thin-film, high-density micro-electrocorticographic decoding of a human cortical gyrus," in Engineering in Medicine and Biology Society (EMBC), 2016 IEEE 38th Annual International Conference of the, 2016, pp. 1528-1531. [72] R. Muller, H.-P. Le, W. Li, P. Ledochowitsch, S. Gambini, T. Bjorninen, et al., "A minimally invasive 64-channel wireless μECOG implant," IEEE Journal of Solid-State Circuits, vol. 50, pp. 344-359, 2015. [73] H. Toda, T. Suzuki, H. Sawahata, K. Majima, Y. Kamitani, and I. Hasegawa, "Simultaneous recording of ECoG and intracortical neuronal activity using a flexible multichannel electrode-mesh in visual cortex," Neuroimage, vol. 54, pp. 203-212, 2011. [74] J. Viventi, D.-H. Kim, L. Vigeland, E. S. Frechette, J. A. Blanco, Y.-S. Kim, et al., "Flexible, foldable, actively multiplexed, high-density electrode array for mapping brain activity in vivo," Nature neuroscience, vol. 14, pp. 1599-1605, 2011. [75] M. A. Escabí, H. L. Read, J. Viventi, D.-H. Kim, N. C. Higgins, D. A. Storace, et al., "A high-density, high-channel count, multiplexed μECoG array for auditory-cortex recordings," Journal of neurophysiology, vol. 112, pp. 1566-1583, 2014. [76] A. M. Van Rijn, A. Peper, and C. Grimbergen, "High-quality recording of bioelectric events," Medical and Biological Engineering and Computing, vol. 28, pp. 389-397, 1990. [77] Y.-K. Wang, "Brain Activity Monitoring based on Near-Infrared Spectroscopy and Electroencephalography," Master, Institute of Electrical Control Engineering, National Chiao Tung University, Hsinchu, 2016. [78] R. R. Harrison and C. Charles, "A low-power low-noise CMOS amplifier for neural recording applications," IEEE Journal of solid-state circuits, vol. 38, pp. 958-965, 2003. [79] R. R. Harrison, "A versatile integrated circuit for the acquisition of biopotentials," in 2007 IEEE Custom Integrated Circuits Conference, 2007, pp. 115-122. [80] W. Wattanapanitch, M. Fee, and R. Sarpeshkar, "An Energy-Efficient Micropower Neural Recording Amplifier," IEEE Transactions on Biomedical Circuits and Systems, vol. 1, pp. 136-147, 2007. [81] X.-Z. Chen, "Using Leakage Feedback Element in Low Noise Front-end Amplifier by Pseudo Resistor for Neural Recording Applications IC," Master, Institute of Electrical Control Engineering, National Chiao Tung University, Hsinchu, 2013. [82] M. Yin and M. Ghovanloo, "A low-noise clockless simultaneous 32-channel wireless neural recording system with adjustable resolution," Analog Integrated Circuits and Signal Processing, vol. 66, pp. 417-431, 2011. [83] M. Azin, D. J. Guggenmos, S. Barbay, R. J. Nudo, and P. Mohseni, "A battery-powered activity-dependent intracortical microstimulation IC for brain-machine-brain interface," IEEE Journal of Solid-State Circuits, vol. 46, pp. 731-745, 2011. [84] C. M. López, D. Braeken, C. Bartic, R. Puers, G. Gielen, and W. Eberle, "A 16-channel low-noise programmable system for the recording of neural signals," in 2011 IEEE International Symposium of Circuits and Systems (ISCAS), 2011, pp. 1451-1454. [85] B. He, T. Coleman, G. M. Genin, G. Glover, X. Hu, N. Johnson, et al., "Grand challenges in mapping the human brain: NSF workshop report," IEEE Trans. Biomed. Engineering, vol. 60, pp. 2983-2992, 2013. [86] C.-W. Chang, L.-C. Chou, P.-T. Huang, S.-L. Wu, S.-W. Lee, C.-T. Chuang, et al., "A double-sided, single-chip integration scheme using through-silicon-via for neural sensing applications," Biomedical microdevices, vol. 17, pp. 1-15, 2015. [87] P.-T. Huang, S.-L. Wu, Y.-C. Huang, L.-C. Chou, T.-C. Huang, T.-H. Wang, et al., "2.5 D Heterogeneously Integrated Microsystem for High-Density Neural Sensing Applications," IEEE transactions on biomedical circuits and systems, vol. 8, pp. 810-823, 2014. [88] K. A. Ng and Y. P. Xu, "11.6 A multi-channel neural-recording amplifier system with 90dB CMRR employing CMOS-inverter-based OTAs with CMFB through supply rails in 65nm CMOS," in 2015 IEEE International Solid-State Circuits Conference-(ISSCC) Digest of Technical Papers, 2015, pp. 1-3. [89] I. Daubechies and W. Sweldens, "Factoring wavelet transforms into lifting steps," Journal of Fourier analysis and applications, vol. 4, pp. 247-269, 1998. [90] C.-Y. Wu and C.-S. Ho, "An 8-channel chopper-stabilized analog front-end amplifier for EEG acquisition in 65-nm CMOS," in Solid-State Circuits Conference (A-SSCC), 2015 IEEE Asian, 2015, pp. 1-4. [91] E. M. Maynard, C. T. Nordhausen, and R. A. Normann, "The Utah intracortical electrode array: a recording structure for potential brain-computer interfaces," Electroencephalography and clinical neurophysiology, vol. 102, pp. 228-239, 1997. [92] H. Wark, R. Sharma, K. Mathews, E. Fernandez, J. Yoo, B. Christensen, et al., "A new high-density (25 electrodes/mm2) penetrating microelectrode array for recording and stimulating sub-millimeter neuroanatomical structures," Journal of neural engineering, vol. 10, p. 045003, 2013. [93] T. A. Fofonoff, S. M. Martel, N. G. Hatsopoulos, J. P. Donoghue, and I. W. Hunter, "Microelectrode array fabrication by electrical discharge machining and chemical etching," IEEE transactions on biomedical engineering, vol. 51, pp. 890-895, 2004. [94] K. D. Wise, A. M. Sodagar, Y. Yao, M. N. Gulari, G. E. Perlin, and K. Najafi, "Microelectrodes, microelectronics, and implantable neural microsystems," Proceedings of the IEEE, vol. 96, pp. 1184-1202, 2008. [95] E. Bharucha, H. Sepehrian, and B. Gosselin, "A Survey of Neural Front End Amplifiers and Their Requirements toward Practical Neural Interfaces," Journal of Low Power Electronics and Applications, vol. 4, pp. 268-291, 2014. [96] S.-C. Lee, T.-J. Chen, and H. Chiueh, "A multi-channel multi-mode physiological signals acquisition and analysis platform," in 2013 IEEE International Symposium on Circuits and Systems (ISCAS2013), 2013, pp. 397-400. [97] K. M. Al-Ashmouny, S.-I. Chang, and E. Yoon, "A 4 analog front-end module with moderate inversion and power-scalable sampling operation for 3-D neural microsystems," IEEE transactions on biomedical circuits and systems, vol. 6, pp. 403-413, 2012. [98] F. Shahrokhi, K. Abdelhalim, and R. Genov, "128-channel fully differential digital neural recording and stimulation interface," in 2009 IEEE International Symposium on Circuits and Systems, 2009, pp. 1249-1252. [99] Y. C. Huang, Y. C. Hu, P. T. Huang, S. L. Wu, Y. H. You, J. M. Chen, et al., "Integration of neural sensing microsystem with TSV-embedded dissolvable micro-needles array, biocompatible flexible interposer, and neural recording circuits," in 2016 IEEE Symposium on VLSI Technology, 2016, pp. 1-2. [100] Y.-J. Chang, C.-T. Ko, T.-H. Yu, C.-H. Chiang, and K.-N. Chen, "Backside-Process-Induced Junction Leakage and Process Improvement of Cu TSV Based on Cu/Sn and BCB Hybrid Bonding," IEEE Electron Device Letters, vol. 34, pp. 435-437, 2013. [101] Y.-C. Hu, C.-P. Lin, Y.-J. Chang, N.-S. Chang, M.-H. Sheu, C.-S. Chen, et al., "A Novel Flexible 3-D Heterogeneous Integration Scheme Using Electroless Plating on Chips With Advanced Technology Node," IEEE Transactions on Electron Devices, vol. 62, pp. 4148-4153, 2015. [102] Y.-C. Huang, P.-T. Huang, S.-L. Wu, Y.-C. Hu, Y.-H. You, M. Chen, et al., "An ultra-high-density 256-channel/25mm2 neural sensing microsystem using TSV-embedded neural probes," in Circuits and Systems (ISCAS), 2016 IEEE International Symposium on, 2016, pp. 1302-1305. [103] E. Biazar, Z. Roveimiab, G. Shahhosseini, M. Khataminezhad, M. Zafari, and A. Majdi, "Biocompatibility evaluation of a new hydrogel dressing based on polyvinylpyrrolidone/polyethylene glycol," BioMed Research International, vol. 2012, 2011. [104] J. Liu, X. Zheng, and Y. Zhang, "Compatibility and properties of biodegradable blend films with gelatin and poly (vinyl alcohol)," Journal of Wuhan University of Technology-Mater. Sci. Ed., vol. 29, pp. 351-356, 2014. [105] P.-T. Huang, L.-C. Chou, T.-C. Huang, S.-L. Wu, T.-S. Wang, Y.-R. Lin, et al., "18.6 2.5 D heterogeneously integrated bio-sensing microsystem for multi-channel neural-sensing applications," in 2014 IEEE International Solid-State Circuits Conference Digest of Technical Papers (ISSCC), 2014, pp. 320-321. [106] G. Paxinos and K. B. Franklin, The mouse brain in stereotaxic coordinates: Gulf Professional Publishing, 2004. [107] F. A. Bazley, A. Maybhate, C. S. Tan, N. V. Thakor, C. Kerr, and A. H. All, "Enhancement of bilateral cortical somatosensory evoked potentials to intact forelimb stimulation following thoracic contusion spinal cord injury in rats," IEEE Transactions on Neural Systems and Rehabilitation Engineering, vol. 22, pp. 953-964, 2014. [108] F.-Z. Shaw, T.-F. Yang, C.-C. Huang, K.-H. Yeh, T.-C. Chang, and F.-J. Leu, "Multichannel planar microelectrode array for somatic mapping in rats," Biomedical Engineering: Applications, Basis and Communications, vol. 23, pp. 501-508, 2011. [109] A. M. Seelke, J. C. Dooley, and L. A. Krubitzer, "The emergence of somatotopic maps of the body in S1 in rats: the correspondence between functional and anatomical organization," PloS one, vol. 7, p. e32322, 2012. [110] M. W. Slutzky, L. R. Jordan, T. Krieg, M. Chen, D. J. Mogul, and L. E. Miller, "Optimal spacing of surface electrode arrays for brain–machine interface applications," Journal of neural engineering, vol. 7, p. 026004, 2010.
|