跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.213) 您好!臺灣時間:2025/11/11 19:09
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:黃煜傑
研究生(外文):Huang, Yu-Chieh
論文名稱:應用於侵入/非侵入式腦神經訊號記錄之腦部活動監測系統設計、製作與驗證
論文名稱(外文):Design, Fabrication, and Verification of Neural Signal Recording System for Non-invasive and Invasive Brain Activity Monitoring
指導教授:邱俊誠邱俊誠引用關係
指導教授(外文):Chiou, Jin-Chern
口試委員:黃威莊景德陳冠能蕭富仁曲在雯吳順德梁聖泉邱俊誠
口試委員(外文):Hwang, WeiChuang, Ching-TeChen, Kuan-NengShaw, Fu-ZenChiu, Tzai-WenWu, Shuen-DeLiang, Sheng-ChuanChiou, Jin-Chern
口試日期:2017-01-11
學位類別:博士
校院名稱:國立交通大學
系所名稱:電控工程研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:英文
論文頁數:122
中文關鍵詞:腦皮質電位垂直矽穿孔微探針陣列體感誘發電位近紅外光譜氧合血紅素去氧血紅素腦電波
外文關鍵詞:ECoGTSVmicroprobe arraySSEPNIRSHbO2HbEEG
相關次數:
  • 被引用被引用:0
  • 點閱點閱:376
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
腦部活動觀測,能夠反應受測者的生理與心理狀況,透過記錄並分析腦部活動訊號,如非侵入式的腦波、腦血氧濃度變化,以及侵入式的腦皮質層電訊號,能夠根據不同的需求與應用,建立大腦地圖,幫助了解腦部功能的分布情形,進一步剖析疾病的成因。
在非侵入腦部活動觀測方面,本研究建立了一套同時記錄腦部活動所造成的血氧濃度變化與腦電訊號反應的系統,並利用同步量測之腦電訊號驗證血氧濃度變化量測之有效性。此系統相具有非侵入式、穿戴方便與操作簡單之優勢。為了縮短訊號傳遞路徑,並減少訊號傳遞損耗,本系統設計了前端類比放大電路,並將其置於感測探頭之中,在訊號傳輸前先進行預處理放大,提高訊號訊雜比,其單一通道功耗僅18.3 µW。接著將前端類比放大晶片與後端血氧濃度與腦電訊號同步量測系統整合,利用閉眼與憋氣、心算和握拳實驗來驗證系統的可靠度,並同步記錄血氧濃度與腦電訊號的變化,在不同實驗狀態下,成功驗證本系統能有效利用腦部血氧變化評估受測者的腦部活動情形。
此外,本研究更提出一套侵入式的高密度256通道之微探針陣列系統。利用矽基材製作微探針陣列,並透過垂直矽穿孔技術,實現超高密度的腦電訊號擷取探針陣列,將腦皮質層電訊號,垂直傳遞至後端神經訊號處理電路,節省額外繞線所造成的雜訊干擾與訊號損失。接著利用垂直矽穿孔封裝整合與無電鍍鎳金(ENIG)覆金封裝技術,可將腦神經電訊號處理晶片、微探針陣列透過中介層(interposer)進行整合,大幅縮小探針陣列系統尺寸,減少腦部手術開孔面積,提高手術成功率,並在有限面積下,實現超高解析度腦神經訊號擷取。在體感誘發電位的實驗中,本研究的矽探針電極,能夠有效分辨來自各部位肢體受到電刺激後的腦皮質層電訊號反應,有助於解析腦部各部位的神經傳遞的異常情形。
Brain activity monitoring can help reflect philological and psychological conditions of a subject through recordings of electroencephalography (EEG) and concentration of hemoglobin, and electrocorticography (ECoG). According to different requirement and applications, these tools of brain activity monitory could be useful to build brain mapping to figure out the relation between each biomarker to different brain diseases. Hence, this study proposed non-invasive and invasive system to monitor brain signal for further analysis.
In non-invasive monitoring, this study proposes a wearable system to simultaneously monitor variations in hemoglobin concentrations and EEG, which will help understand the relationship between these changes. To shorten the signal transmission path and reduce signal loss, we designed a low power consumption analog front-end (AFE) amplifier embedded into sensor devices to amplify and filter signals before processing and increase the signal-to-noise ratio. It can substitute the skin-electrode interface DC offset and avoid AFE amplifier saturation or distortion; it requires only 18.3-µW power consumption. Moreover, the sensor device with the AFE amplifier was integrated into the system for recording blood oxygen and EEG, and its feasibility for the system was proved by experiments involving closing the eyes, holding the breath, mental arithmetic, and grasping the hand. The experimental results proved that the near-infrared spectroscopy and electroencephalography recordings for event-triggered behaviors have different response times. These results help in disease diagnosis, surgery monitoring, neural rehabilitation, and prevention of behavioral disorders.
Moreover, highly integrated neural sensing microsystems are crucial to capture accurate signals for brain function investigations. In this study, a 256-channel neural sensing microsystem is presented based on 2.5D through-silicon-via (TSV) integration to acquire high spatiotemporal neural signals. This microsystem composes of dissolvable µ-needles, TSV-embedded µ-probes, and neural sensing circuits. Through TSV technologies, the neural signals sense from the proposed µ-probe array can be delivered to the neural signal processing circuit to prevent from signal distortion and external noise without redundant wire routing. By using technologies of TSV and ENIG, the size of the proposed micro system can be greatly reduced for implantation and increase the success rate of surgery with a limited surgical area. The feasibility of the proposed microsystem has been also successfully verified through responses of somatosensory evoked potentials according to different intensity of current stimuli at body, and shows the system can distinguish each stimulation came from different positions.
Table of Contents

摘要 III
Abstract V
Table of Contents VII
List of Figures X
List of Tables XVI
Chapter 1. Introduction 1
1.1 Brain Activities 1
1.2 Method of Brain Monitoring 2
1.3 Application of Brain Activity Monitoring 3
1.4 Organization 4
Chapter 2. Sensor Systems for Non-invasive and Invasive Brain Signal Recording 5
2.1 Non-invasive Brain Signal Recording 5
2.2 Application of Non-invasive Brain Signal Recording 7
2.2.1 Neural Rehabilitation 7
2.2.2 Brain Function and Disease Diagnosis 8
2.3 Introduction to EEG Signals 12
2.4 Introduction to NIRS Signals 14
2.5 BCI with EEG and NIRS 18
2.6 Relations between NIRS and EEG Signals 22
2.7 Invasive Brain Signal Recording 24
2.8 Importance of Sensor Design for Brain Signal Recording 31
2.8.1 Improvement of Non-invasive Sensor Design 31
2.8.2 Improvement of Invasive Sensor Design 32
Chapter 3. NIRS and EEG System for Brain Signal Recording 33
3.1 Proposed Cost-effective NIRS and EEG System 33
3.1.1 Design of NIRS and EEG Probe 35
3.1.2 Design of Analog Front-end Amplifier Circuit 37
3.1.3 Design of Proposed Pseudo Resistor 38
3.1.4 Simulation Result of Analog Front-end Amplifier Circuit 40
3.1.5 Chip implementation of the proposed analog front-end amplifier 43
3.1.6 Measurement results of the proposed analog front-end amplifier IC 44
3.1.7 Design of Post Signal Processing Circuit for NIRS and EEG Signals 46
3.1.8 Design of FPGA 48
3.1.9 LED and PD Calibration 49
3.1.10 Design of Software Interface 51
3.1.11 System Implementation and Integration 52
3.2 Experiments for NIRS and EEG System Verification 53
3.2.1 Brain Oxygen Blocking Test for NIRS system 54
3.2.2 Evoked Potential response to Alpha wave 57
3.3 Experiments for Simultaneously Recording with NIRS and EEG 60
3.3.1 Eye-closing and Breath-holding Experiment 61
3.3.2 Mental Arithmetic Experiment 67
3.3.3 Hand-clenching Experiments 70
3.4 Discussion of Simultaneously Recording with NIRS and EEG 73
Chapter 4. TSV-embedded µ-needle Array Neural Sensing Microsystem 75
4.1 Proposed ultra-high density TSV-based µ-needle array for ECoG/LFP Monitoring 75
4.2 Fabrication of TSV-embedded µ-needle Array Neural Sensing Microsystem 80
4.2.1 Fabrication of µ-probe Array 80
4.2.2 Fabrication of Interposer 81
4.2.3 256-Channel Neural Signal Acquisition Circuit 82
4.2.4 Fabrication Process of µ-needles 87
4.2.5 Implementation of TSV-embedded µ-needle Array Neural Sensing Microsystem 88
4.3 EIS and Physical Test of µ-probe array system for feasibility verification 90
4.3.1 EIS Measurement 90
4.3.2 Penetration Test 91
4.4 Somatosensory Cortex SSEP Experiment for Verification 93
4.4.1 Animal Preparation and Electrocorticography (ECoG) Recording 93
4.4.2 Electrical Stimulation and Data Analysis 96
4.4.3 Experimental Results and Discussion 99
4.5 Integration of TSV-embedded µ-needle Array Neural Sensing Microsystem 108
4.6 Discussion and Summarization 110
Chapter 5. Conclusion and Future Work 111
5.1 Conclusion 111
5.2 Future Work 113
Reference 114
Curriculum Vitae 123
Reference
[1] S. Waldert, T. Pistohl, C. Braun, T. Ball, A. Aertsen, and C. Mehring, "A review on directional information in neural signals for brain-machine interfaces," Journal of Physiology-Paris, vol. 103, pp. 244-254, 2009.
[2] Wikipedia, "Electrocorticography," 2016.
[3] T. Zama and S. Shimada, "Simultaneous measurement of electroencephalography and near-infrared spectroscopy during voluntary motor preparation," Scientific reports, vol. 5, 2015.
[4] B. Klassen, J. Hentz, H. Shill, E. Driver-Dunckley, V. Evidente, M. Sabbagh, et al., "Quantitative EEG as a predictive biomarker for Parkinson disease dementia," Neurology, vol. 77, pp. 118-124, 2011.
[5] Wikipedia. (2016). Intraoperative neurophysiological monitoring Available: https://en.wikipedia.org/wiki/Intraoperative_neurophysiological_monitoring
[6] A. N. Almeida, V. Martinez, and W. Feindel, "The first case of invasive EEG monitoring for the surgical treatment of epilepsy: historical significance and context," Epilepsia, vol. 46, pp. 1082-1085, 2005.
[7] J. Howick, B. A. Cohen, P. McCulloch, M. Thompson, and S. A. Skinner, "Foundations for evidence-based intraoperative neurophysiological monitoring," Clinical Neurophysiology, vol. 127, pp. 81-90, 2016.
[8] S.-M. Kim, S. H. Kim, D.-W. Seo, and K.-W. Lee, "Intraoperative neurophysiologic monitoring: basic principles and recent update," Journal of Korean medical science, vol. 28, pp. 1261-1269, 2013.
[9] P. M. Arenth, J. H. Ricker, and M. T. Schultheis, "Applications of functional near-infrared spectroscopy (fNIRS) to neurorehabilitation of cognitive disabilities," The Clinical Neuropsychologist, vol. 21, pp. 38-57, 2007.
[10] M. Mihara and I. Miyai, "Review of functional near-infrared spectroscopy in neurorehabilitation," Neurophotonics, vol. 3, pp. 031414-031414, 2016.
[11] J. Dauwels, F. Vialatte, and A. Cichocki, "Diagnosis of Alzheimer's disease from EEG signals: where are we standing?," Current Alzheimer Research, vol. 7, pp. 487-505, 2010.
[12] S. Smith, "EEG in the diagnosis, classification, and management of patients with epilepsy," Journal of Neurology, Neurosurgery & Psychiatry, vol. 76, pp. ii2-ii7, 2005.
[13] N. Naseer and K.-S. Hong, "fNIRS-based brain-computer interfaces: a review," Frontiers in human neuroscience, vol. 9, p. 3, 2015.
[14] I. Šuškevičienė, D. ČeslavaRugytė, T. Bukauskas, A. Vilkė, D. Bilskienė, and A. Macas, "Near-infrared spectroscopy in newborns and infants under general anesthesia," Acta medica Lituanica, vol. 19, 2012.
[15] K. Caeyenberghs, N. Wenderoth, B. Smits-Engelsman, S. Sunaert, and S. Swinnen, "Neural correlates of motor dysfunction in children with traumatic brain injury: exploration of compensatory recruitment patterns," Brain, vol. 132, pp. 684-694, 2009.
[16] A. E. Bond, G. Zada, A. A. Gonzalez, C. Hansen, and S. L. Giannotta, "Operative strategies for minimizing hearing loss and other major complications associated with microvascular decompression for trigeminal neuralgia," World neurosurgery, vol. 74, pp. 172-177, 2010.
[17] K. G. Jordan, "Continuous EEG monitoring in the neuroscience intensive care unit and emergency department," Journal of clinical neurophysiology, vol. 16, pp. 14-39, 1999.
[18] R. J. Andrews, Intraoperative neuroprotection: Lippincott Williams & Wilkins, 1996.
[19] Wikipedia. (2016). Electrocorticography. Available: https://en.wikipedia.org/wiki/Electrocorticography
[20] E. Niedermeyer and F. L. da Silva, Electroencephalography: basic principles, clinical applications, and related fields: Lippincott Williams & Wilkins, 2005.
[21] T. M. P. V. Lab. (2016). Biomedical Signals Acquisition. Available: https://www.medicine.mcgill.ca/physio/vlab/biomed_signals/eeg_n.htm
[22] Wikipedia. (2016). 10-20 system (EEG). Available: https://en.wikipedia.org/wiki/10-20_system_(EEG)
[23] N. Jatupaiboon, S. Pan-ngum, and P. Israsena, "Real-time EEG-based happiness detection system," The Scientific World Journal, vol. 2013, 2013.
[24] F. Sharbrough, G. Chatrian, R. Lesser, H. Lüders, M. Nuwer, and T. Picton, "American Electroencephalographic Society guidelines for standard electrode position nomenclature," J. clin. Neurophysiol, vol. 8, pp. 200-202, 1991.
[25] C. S. Roy and C. S. Sherrington, "On the regulation of the blood-supply of the brain," The Journal of physiology, vol. 11, p. 85, 1890.
[26] D. Hueber, M. Franceschini, H. Ma, Q. Zhang, J. Ballesteros, S. Fantini, et al., "Non-invasive and quantitative near-infrared haemoglobin spectrometry in the piglet brain during hypoxic stress, using a frequency-domain multidistance instrument†," Physics in medicine and biology, vol. 46, p. 41, 2001.
[27] V. Bari, P. Calcagnile, E. Molteni, R. Re, D. Contini, L. Spinelli, et al., "Study of neurovascular and autonomic response in a divided attention test by means of EEG, ECG and NIRS signals," in 2011 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 2011, pp. 1403-1406.
[28] T. Jue and K. Masuda, Application of near infrared spectroscopy in biomedicine: Springer, 2013.
[29] F. F. Jobsis, "Noninvasive, infrared monitoring of cerebral and myocardial oxygen sufficiency and circulatory parameters," Science, vol. 198, pp. 1264-1267, 1977.
[30] J. Murkin and M. Arango, "Near-infrared spectroscopy as an index of brain and tissue oxygenation," British journal of anaesthesia, vol. 103, pp. i3-i13, 2009.
[31] I.-Y. Son and B. Yazici, "Near infrared imaging and spectroscopy for brain activity monitoring," in Advances in Sensing with Security Applications, ed: Springer, 2006, pp. 341-372.
[32] M. Ferrari, I. Giannini, G. Sideri, and E. Zanette, "Continuous non invasive monitoring of human brain by near infrared spectroscopy," in Oxygen Transport to Tissue VII, ed: Springer, 1985, pp. 873-882.
[33] B. Chance, Z. Zhuang, C. UnAh, C. Alter, and L. Lipton, "Cognition-activated low-frequency modulation of light absorption in human brain," Proceedings of the National Academy of Sciences, vol. 90, pp. 3770-3774, 1993.
[34] S. Coyle, T. Ward, C. Markham, and G. McDarby, "On the suitability of near-infrared (NIR) systems for next-generation brain–computer interfaces," Physiological measurement, vol. 25, p. 815, 2004.
[35] D. Choi, Y. Ryu, Y. Lee, and M. Lee, "Performance evaluation of a motor-imagery-based EEG-Brain computer interface using a combined cue with heterogeneous training data in BCI-Naive subjects," Biomedical engineering online, vol. 10, p. 1, 2011.
[36] R. J. Barry, A. R. Clarke, S. J. Johnstone, C. A. Magee, and J. A. Rushby, "EEG differences between eyes-closed and eyes-open resting conditions," Clinical Neurophysiology, vol. 118, pp. 2765-2773, 2007.
[37] J. Zhang, X. Yu, and D. Xie, "Effects of mental tasks on the cardiorespiratory synchronization," Respiratory physiology & neurobiology, vol. 170, pp. 91-95, 2010.
[38] G. Sammer, C. Blecker, H. Gebhardt, M. Bischoff, R. Stark, K. Morgen, et al., "Relationship between regional hemodynamic activity and simultaneously recorded EEG‐theta associated with mental arithmetic‐induced workload," Human brain mapping, vol. 28, pp. 793-803, 2007.
[39] L. Braadbaart, J. H. Williams, and G. D. Waiter, "Do mirror neuron areas mediate mu rhythm suppression during imitation and action observation?," International Journal of Psychophysiology, vol. 89, pp. 99-105, 2013.
[40] L. P. Safonova, A. Michalos, U. Wolf, J. H. Choi, M. Wolf, W. W. Mantulin, et al., "Diminished cerebral circulatory autoregulation in obstructive sleep apnea investigated by near-infrared spectroscopy," Sleep Res Online, vol. 5, pp. 123-32, 2003.
[41] G. Bauernfeind, R. Leeb, S. C. Wriessnegger, and G. Pfurtscheller, "Development, set-up and first results for a one-channel near-infrared spectroscopy system/Entwicklung, Aufbau und vorläufige Ergebnisse eines Einkanal-Nahinfrarot-Spektroskopie-Systems," Biomedizinische Technik, vol. 53, pp. 36-43, 2008.
[42] G. Strangman, J. P. Culver, J. H. Thompson, and D. A. Boas, "A quantitative comparison of simultaneous BOLD fMRI and NIRS recordings during functional brain activation," Neuroimage, vol. 17, pp. 719-731, 2002.
[43] T. Murta, M. Leite, D. W. Carmichael, P. Figueiredo, and L. Lemieux, "Electrophysiological correlates of the BOLD signal for EEG‐informed fMRI," Human brain mapping, vol. 36, pp. 391-414, 2015.
[44] P. T. F. E. RAICHLE and M. A. MINTUN, "Nonoxidative glucose consumption during focal physiologic neural activity," Cell Biol, vol. 102, p. 2076, 1986.
[45] R. B. Buxton, "Dynamic models of BOLD contrast," Neuroimage, vol. 62, pp. 953-961, 2012.
[46] K. Uludağ, B. Müller-Bierl, and K. Uğurbil, "An integrative model for neuronal activity-induced signal changes for gradient and spin echo functional imaging," Neuroimage, vol. 48, pp. 150-165, 2009.
[47] P. A. Valdes‐Sosa, J. M. Sanchez‐Bornot, R. C. Sotero, Y. Iturria‐Medina, Y. Aleman‐Gomez, J. Bosch‐Bayard, et al., "Model driven EEG/fMRI fusion of brain oscillations," Human brain mapping, vol. 30, pp. 2701-2721, 2009.
[48] Wikipedia. (2016). Single-unit recording. Available: https://en.wikipedia.org/wiki/Single-unit_recording
[49] R. M. Dowben and J. E. Rose, "A metal-filled microelectrode," Science, vol. 118, pp. 22-24, 1953.
[50] G. Ettisch and T. Peterfi, "Zur Methodik der Elektrometrie der Zelle," Pflügers Archiv European Journal of Physiology, vol. 208, pp. 454-466, 1925.
[51] J. Green, "A simple microelectrode for recording from the central nervous system," 1958.
[52] F. López-Muñoz, J. Boya, and C. Alamo, "Neuron theory, the cornerstone of neuroscience, on the centenary of the Nobel Prize award to Santiago Ramón y Cajal," Brain research bulletin, vol. 70, pp. 391-405, 2006.
[53] M. A. Nicolelis, D. Dimitrov, J. M. Carmena, R. Crist, G. Lehew, J. D. Kralik, et al., "Chronic, multisite, multielectrode recordings in macaque monkeys," Proceedings of the National Academy of Sciences, vol. 100, pp. 11041-11046, 2003.
[54] H. Super and P. R. Roelfsema, "Chronic multiunit recordings in behaving animals: advantages and limitations," Progress in brain research, vol. 147, pp. 263-282, 2005.
[55] A. C. Hoogerwerf and K. D. Wise, "A three-dimensional microelectrode array for chronic neural recording," IEEE Transactions on Biomedical Engineering, vol. 41, pp. 1136-1146, 1994.
[56] R. A. Normann, E. M. Maynard, P. J. Rousche, and D. J. Warren, "A neural interface for a cortical vision prosthesis," Vision research, vol. 39, pp. 2577-2587, 1999.
[57] R. A. Normann and E. Fernandez, "Clinical applications of penetrating neural interfaces and Utah Electrode Array technologies," Journal of Neural Engineering, vol. 13, p. 061003, 2016.
[58] Y. Yao, M. N. Gulari, J. A. Wiler, and K. D. Wise, "A microassembled low-profile three-dimensional microelectrode array for neural prosthesis applications," Journal of microelectromechanical systems, vol. 16, pp. 977-988, 2007.
[59] S. Spieth, O. Brett, K. Seidl, A. Aarts, M. Erismis, S. Herwik, et al., "A floating 3D silicon microprobe array for neural drug delivery compatible with electrical recording," Journal of Micromechanics and Microengineering, vol. 21, p. 125001, 2011.
[60] M.-Y. Cheng, M. Je, K. L. Tan, E. L. Tan, R. Lim, L. Yao, et al., "A low-profile three-dimensional neural probe array using a silicon lead transfer structure," Journal of Micromechanics and Microengineering, vol. 23, p. 095013, 2013.
[61] W. Pei, H. Zhao, S. Zhao, X. Fang, S. Chen, Q. Gui, et al., "Silicon-based wire electrode array for neural interfaces," Journal of Micromechanics and Microengineering, vol. 24, p. 095015, 2014.
[62] P. J. Rousche and R. A. Normann, "A method for pneumatically inserting an array of penetrating electrodes into cortical tissue," Annals of biomedical engineering, vol. 20, pp. 413-422, 1992.
[63] G. Márton, G. Orbán, M. Kiss, R. Fiáth, A. Pongrácz, and I. Ulbert, "A Multimodal, SU-8-Platinum-Polyimide Microelectrode Array for Chronic In Vivo Neurophysiology," PloS one, vol. 10, p. e0145307, 2015.
[64] Z. Xiang, J. Liu, and C. Lee, "A flexible three-dimensional electrode mesh: An enabling technology for wireless brain–computer interface prostheses," Microsystems & Nanoengineering, vol. 2, 2016.
[65] B. Rubehn, C. Bosman, R. Oostenveld, P. Fries, and T. Stieglitz, "A MEMS-based flexible multichannel ECoG-electrode array," Journal of neural engineering, vol. 6, p. 036003, 2009.
[66] E. Tolstosheeva, V. Gordillo-González, V. Biefeld, L. Kempen, S. Mandon, A. K. Kreiter, et al., "A Multi-Channel, Flex-Rigid ECoG Microelectrode Array for Visual Cortical Interfacing," Sensors, vol. 15, pp. 832-854, 2015.
[67] D.-H. Baek, C.-H. Han, H.-C. Jung, S. M. Kim, C.-H. Im, H.-J. Oh, et al., "Soldering-based easy packaging of thin polyimide multichannel electrodes for neuro-signal recording," Journal of Micromechanics and Microengineering, vol. 22, p. 115017, 2012.
[68] Y. X. Kato, S. Furukawa, K. Samejima, N. Hironaka, and M. Kashino, "Photosensitive-polyimide based method for fabricating various neural electrode architectures," Frontiers in neuroengineering, vol. 5, 2012.
[69] P. Ledochowitsch, R. Félus, R. Gibboni, A. Miyakawa, S. Bao, and M. Maharbiz, "Fabrication and testing of a large area, high density, parylene MEMS µECoG array," in Micro Electro Mechanical Systems (MEMS), 2011 IEEE 24th International Conference on, 2011, pp. 1031-1034.
[70] P. Ledochowitsch, E. Olivero, T. Blanche, and M. M. Maharbiz, "A transparent μECoG array for simultaneous recording and optogenetic stimulation," in 2011 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 2011, pp. 2937-2940.
[71] L. Muller, S. Felix, K. G. Shah, K. Lee, S. Pannu, and E. F. Chang, "Thin-film, high-density micro-electrocorticographic decoding of a human cortical gyrus," in Engineering in Medicine and Biology Society (EMBC), 2016 IEEE 38th Annual International Conference of the, 2016, pp. 1528-1531.
[72] R. Muller, H.-P. Le, W. Li, P. Ledochowitsch, S. Gambini, T. Bjorninen, et al., "A minimally invasive 64-channel wireless μECOG implant," IEEE Journal of Solid-State Circuits, vol. 50, pp. 344-359, 2015.
[73] H. Toda, T. Suzuki, H. Sawahata, K. Majima, Y. Kamitani, and I. Hasegawa, "Simultaneous recording of ECoG and intracortical neuronal activity using a flexible multichannel electrode-mesh in visual cortex," Neuroimage, vol. 54, pp. 203-212, 2011.
[74] J. Viventi, D.-H. Kim, L. Vigeland, E. S. Frechette, J. A. Blanco, Y.-S. Kim, et al., "Flexible, foldable, actively multiplexed, high-density electrode array for mapping brain activity in vivo," Nature neuroscience, vol. 14, pp. 1599-1605, 2011.
[75] M. A. Escabí, H. L. Read, J. Viventi, D.-H. Kim, N. C. Higgins, D. A. Storace, et al., "A high-density, high-channel count, multiplexed μECoG array for auditory-cortex recordings," Journal of neurophysiology, vol. 112, pp. 1566-1583, 2014.
[76] A. M. Van Rijn, A. Peper, and C. Grimbergen, "High-quality recording of bioelectric events," Medical and Biological Engineering and Computing, vol. 28, pp. 389-397, 1990.
[77] Y.-K. Wang, "Brain Activity Monitoring based on Near-Infrared Spectroscopy and Electroencephalography," Master, Institute of Electrical Control Engineering, National Chiao Tung University, Hsinchu, 2016.
[78] R. R. Harrison and C. Charles, "A low-power low-noise CMOS amplifier for neural recording applications," IEEE Journal of solid-state circuits, vol. 38, pp. 958-965, 2003.
[79] R. R. Harrison, "A versatile integrated circuit for the acquisition of biopotentials," in 2007 IEEE Custom Integrated Circuits Conference, 2007, pp. 115-122.
[80] W. Wattanapanitch, M. Fee, and R. Sarpeshkar, "An Energy-Efficient Micropower Neural Recording Amplifier," IEEE Transactions on Biomedical Circuits and Systems, vol. 1, pp. 136-147, 2007.
[81] X.-Z. Chen, "Using Leakage Feedback Element in Low Noise Front-end Amplifier by Pseudo Resistor for Neural Recording Applications IC," Master, Institute of Electrical Control Engineering, National Chiao Tung University, Hsinchu, 2013.
[82] M. Yin and M. Ghovanloo, "A low-noise clockless simultaneous 32-channel wireless neural recording system with adjustable resolution," Analog Integrated Circuits and Signal Processing, vol. 66, pp. 417-431, 2011.
[83] M. Azin, D. J. Guggenmos, S. Barbay, R. J. Nudo, and P. Mohseni, "A battery-powered activity-dependent intracortical microstimulation IC for brain-machine-brain interface," IEEE Journal of Solid-State Circuits, vol. 46, pp. 731-745, 2011.
[84] C. M. López, D. Braeken, C. Bartic, R. Puers, G. Gielen, and W. Eberle, "A 16-channel low-noise programmable system for the recording of neural signals," in 2011 IEEE International Symposium of Circuits and Systems (ISCAS), 2011, pp. 1451-1454.
[85] B. He, T. Coleman, G. M. Genin, G. Glover, X. Hu, N. Johnson, et al., "Grand challenges in mapping the human brain: NSF workshop report," IEEE Trans. Biomed. Engineering, vol. 60, pp. 2983-2992, 2013.
[86] C.-W. Chang, L.-C. Chou, P.-T. Huang, S.-L. Wu, S.-W. Lee, C.-T. Chuang, et al., "A double-sided, single-chip integration scheme using through-silicon-via for neural sensing applications," Biomedical microdevices, vol. 17, pp. 1-15, 2015.
[87] P.-T. Huang, S.-L. Wu, Y.-C. Huang, L.-C. Chou, T.-C. Huang, T.-H. Wang, et al., "2.5 D Heterogeneously Integrated Microsystem for High-Density Neural Sensing Applications," IEEE transactions on biomedical circuits and systems, vol. 8, pp. 810-823, 2014.
[88] K. A. Ng and Y. P. Xu, "11.6 A multi-channel neural-recording amplifier system with 90dB CMRR employing CMOS-inverter-based OTAs with CMFB through supply rails in 65nm CMOS," in 2015 IEEE International Solid-State Circuits Conference-(ISSCC) Digest of Technical Papers, 2015, pp. 1-3.
[89] I. Daubechies and W. Sweldens, "Factoring wavelet transforms into lifting steps," Journal of Fourier analysis and applications, vol. 4, pp. 247-269, 1998.
[90] C.-Y. Wu and C.-S. Ho, "An 8-channel chopper-stabilized analog front-end amplifier for EEG acquisition in 65-nm CMOS," in Solid-State Circuits Conference (A-SSCC), 2015 IEEE Asian, 2015, pp. 1-4.
[91] E. M. Maynard, C. T. Nordhausen, and R. A. Normann, "The Utah intracortical electrode array: a recording structure for potential brain-computer interfaces," Electroencephalography and clinical neurophysiology, vol. 102, pp. 228-239, 1997.
[92] H. Wark, R. Sharma, K. Mathews, E. Fernandez, J. Yoo, B. Christensen, et al., "A new high-density (25 electrodes/mm2) penetrating microelectrode array for recording and stimulating sub-millimeter neuroanatomical structures," Journal of neural engineering, vol. 10, p. 045003, 2013.
[93] T. A. Fofonoff, S. M. Martel, N. G. Hatsopoulos, J. P. Donoghue, and I. W. Hunter, "Microelectrode array fabrication by electrical discharge machining and chemical etching," IEEE transactions on biomedical engineering, vol. 51, pp. 890-895, 2004.
[94] K. D. Wise, A. M. Sodagar, Y. Yao, M. N. Gulari, G. E. Perlin, and K. Najafi, "Microelectrodes, microelectronics, and implantable neural microsystems," Proceedings of the IEEE, vol. 96, pp. 1184-1202, 2008.
[95] E. Bharucha, H. Sepehrian, and B. Gosselin, "A Survey of Neural Front End Amplifiers and Their Requirements toward Practical Neural Interfaces," Journal of Low Power Electronics and Applications, vol. 4, pp. 268-291, 2014.
[96] S.-C. Lee, T.-J. Chen, and H. Chiueh, "A multi-channel multi-mode physiological signals acquisition and analysis platform," in 2013 IEEE International Symposium on Circuits and Systems (ISCAS2013), 2013, pp. 397-400.
[97] K. M. Al-Ashmouny, S.-I. Chang, and E. Yoon, "A 4 analog front-end module with moderate inversion and power-scalable sampling operation for 3-D neural microsystems," IEEE transactions on biomedical circuits and systems, vol. 6, pp. 403-413, 2012.
[98] F. Shahrokhi, K. Abdelhalim, and R. Genov, "128-channel fully differential digital neural recording and stimulation interface," in 2009 IEEE International Symposium on Circuits and Systems, 2009, pp. 1249-1252.
[99] Y. C. Huang, Y. C. Hu, P. T. Huang, S. L. Wu, Y. H. You, J. M. Chen, et al., "Integration of neural sensing microsystem with TSV-embedded dissolvable micro-needles array, biocompatible flexible interposer, and neural recording circuits," in 2016 IEEE Symposium on VLSI Technology, 2016, pp. 1-2.
[100] Y.-J. Chang, C.-T. Ko, T.-H. Yu, C.-H. Chiang, and K.-N. Chen, "Backside-Process-Induced Junction Leakage and Process Improvement of Cu TSV Based on Cu/Sn and BCB Hybrid Bonding," IEEE Electron Device Letters, vol. 34, pp. 435-437, 2013.
[101] Y.-C. Hu, C.-P. Lin, Y.-J. Chang, N.-S. Chang, M.-H. Sheu, C.-S. Chen, et al., "A Novel Flexible 3-D Heterogeneous Integration Scheme Using Electroless Plating on Chips With Advanced Technology Node," IEEE Transactions on Electron Devices, vol. 62, pp. 4148-4153, 2015.
[102] Y.-C. Huang, P.-T. Huang, S.-L. Wu, Y.-C. Hu, Y.-H. You, M. Chen, et al., "An ultra-high-density 256-channel/25mm2 neural sensing microsystem using TSV-embedded neural probes," in Circuits and Systems (ISCAS), 2016 IEEE International Symposium on, 2016, pp. 1302-1305.
[103] E. Biazar, Z. Roveimiab, G. Shahhosseini, M. Khataminezhad, M. Zafari, and A. Majdi, "Biocompatibility evaluation of a new hydrogel dressing based on polyvinylpyrrolidone/polyethylene glycol," BioMed Research International, vol. 2012, 2011.
[104] J. Liu, X. Zheng, and Y. Zhang, "Compatibility and properties of biodegradable blend films with gelatin and poly (vinyl alcohol)," Journal of Wuhan University of Technology-Mater. Sci. Ed., vol. 29, pp. 351-356, 2014.
[105] P.-T. Huang, L.-C. Chou, T.-C. Huang, S.-L. Wu, T.-S. Wang, Y.-R. Lin, et al., "18.6 2.5 D heterogeneously integrated bio-sensing microsystem for multi-channel neural-sensing applications," in 2014 IEEE International Solid-State Circuits Conference Digest of Technical Papers (ISSCC), 2014, pp. 320-321.
[106] G. Paxinos and K. B. Franklin, The mouse brain in stereotaxic coordinates: Gulf Professional Publishing, 2004.
[107] F. A. Bazley, A. Maybhate, C. S. Tan, N. V. Thakor, C. Kerr, and A. H. All, "Enhancement of bilateral cortical somatosensory evoked potentials to intact forelimb stimulation following thoracic contusion spinal cord injury in rats," IEEE Transactions on Neural Systems and Rehabilitation Engineering, vol. 22, pp. 953-964, 2014.
[108] F.-Z. Shaw, T.-F. Yang, C.-C. Huang, K.-H. Yeh, T.-C. Chang, and F.-J. Leu, "Multichannel planar microelectrode array for somatic mapping in rats," Biomedical Engineering: Applications, Basis and Communications, vol. 23, pp. 501-508, 2011.
[109] A. M. Seelke, J. C. Dooley, and L. A. Krubitzer, "The emergence of somatotopic maps of the body in S1 in rats: the correspondence between functional and anatomical organization," PloS one, vol. 7, p. e32322, 2012.
[110] M. W. Slutzky, L. R. Jordan, T. Krieg, M. Chen, D. J. Mogul, and L. E. Miller, "Optimal spacing of surface electrode arrays for brain–machine interface applications," Journal of neural engineering, vol. 7, p. 026004, 2010.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top