跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.110) 您好!臺灣時間:2025/09/28 00:57
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:黃裕軒
研究生(外文):Yu-Hsuan Huang
論文名稱:化學水浴法製備鋁和錳摻雜氧化鋅奈米柱陣列對場發射特性之影響
論文名稱(外文):Effect of Field Emission Characteristics of Al and Mn-doped ZnO Nanorod Arrays Grown by Chemical Bath Deposition
指導教授:李宜穆李宜穆引用關係
指導教授(外文):Yi-Mu Lee
口試委員:陳宏偉廖朝光
口試委員(外文):Hung-Wei ChenChau-Kuang Liau
口試日期:2015-07-16
學位類別:碩士
校院名稱:國立聯合大學
系所名稱:電子工程學系碩士班
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2015
畢業學年度:103
語文別:中文
論文頁數:65
中文關鍵詞:化學水浴法氧化鋅奈米柱鋁摻雜錳摻雜場發射特性
外文關鍵詞:Chemical bath depositionZnO nanorod arraysAl-dopedMn-dopedField emission
相關次數:
  • 被引用被引用:0
  • 點閱點閱:202
  • 評分評分:
  • 下載下載:9
  • 收藏至我的研究室書目清單書目收藏:0
本研究是利用低溫化學水浴沉積法(Chemical Bath Deposition, CBD)在ITO玻璃基板上製備未摻雜、鋁摻雜、錳摻雜氧化鋅奈米柱陣列,並探討摻雜鋁、錳離子和不同摻雜濃度對於氧化鋅奈米柱之結構與場發射特性的影響。掃描電子顯微鏡 (Scanning Electron Microscope, SEM)顯示經過種晶層製備和1.5小時的CBD反應時間的未摻雜、1 mol%錳摻雜、3 mol%錳摻雜、1 mol%鋁摻雜、3 mol%鋁摻雜氧化鋅的長度分別為1.05、0.92、1.01、1.45、1.58 μm和直徑分別為72.4、104.8、76.3、116.2、122.6 nm,X光繞射分析圖(XRD)用來研究結構,鋁、錳摻雜氧化鋅仍然維持六方纖鋅礦結構,鋁摻雜和錳摻雜氧化鋅的優選生長方向分別為(002)和(101),光致發光(PL)分析顯示鋁摻雜提高紫外光區的波峰強度而錳摻雜降低紫外光區的波峰強度。從場發射測量結果得知未摻雜、1 mol%錳摻雜、3 mol%錳摻雜、1 mol%鋁摻雜、3 mol%鋁摻雜的起始電場分別為1.21、1.5、1.92、0.92、0.42 V/μm,場增強因子(β)為9580、4821、9340、10468、17015,摻雜鋁可以改善場發射特性,3 mol%鋁摻雜氧化鋅場發射元件擁有最低的起始電場(0.42 V/μm)和最高場增強因子(β~17015)。
ZnO, Al-doped ZnO and Mn-doped ZnO nanorod arrays were prepared on the ITO substrate by low-temperature chemical bath deposition (CBD) method. The effects of dopants (Al or Mn) and doping concentrations (1~3 mol%) on the structural and field emission properties were investigated in this work. SEM results show that the 3 mol% Al or Mn doping ZnO nanorods have length increased from 1.05 nm to 1.58 nm and 1.01 nm, respectively. Meanwhile, the diameter of the ZnO nanorods is significantly increased. XRD analysis shows that the Al-doped and Mn-doped ZnO nanorods possess a hexagonal phase of ZnO, indicating an excellent wurtzite structure with high crystallinity. Among the prepared samples, 3 mol% Al-doped ZnO nanorods exhibit higher intensity ratio of (002) to (101) diffraction peaks, indicating the well-aligned growth on the ITO substrate. Photoluminescence (PL) spectra show that Al-doped ZnO exhibits highest 380 nm feature peak, and the enhanced UV to visible emission ratio also reflects the high nanorod crystallinity. From the field emission measurement, Al-dopant effectively reduces the turn-on field to ~0.42 V/μm and improves the field enhancement factor (β) to about 17015 due to the improved crystallinity and oxygen defect properties.
摘要
Abstract
致謝
目錄
圖目錄
表目錄
第一章 緒論
1.1 前言
1.2 氧化鋅(ZnO)介紹
1.3 摻雜型氧化鋅
第二章 場發射原理及文獻
2.1 場發射原理
2.2 場發射文獻回顧
第三章 實驗方法
3.1 實驗材料、儀器
3.2 製作與量測規劃
3.3 實驗步驟
3.3.1 玻璃基板清洗
3.3.2 浸漬覆膜法製備氧化鋅種晶層
3.3.3 化學水浴法製備未摻雜、鋁摻雜、錳摻雜氧化鋅奈米柱陣列
3.3.4 場發射元件組裝與量測
3.4 測量儀器
3.4.1 掃描式電子顯微鏡
3.4.2 X光繞射分析儀
3.4.3 Jiehan 電化學分析儀
第四章 實驗數據與分析
4.1 電子顯微鏡量測(SEM)分析
4.2 X光繞射(XRD)分析
4.3 光致發光(PL)分析
4.4 I-V特性量測
4.5 場發射特性分析
4.6 電流穩定度分析
第五章 結論與建議
5.1 結論
5.2 未來研究建議
參考文獻

[1]Satish S. Badadhe, I.S. Mulla, “H2S gas sensitive indium-doped ZnO thin films: Preparation and characterization”, Sensors and Actuators B 143 (2009) 164-170.
[2]U. Rössler, Landolt-Bornstein, New Series, Group III,Vol. 17B, 22, 41B, Springer, Heidelberg, 1999.
[3]S.J. Pearton, D.P. Norton, K. Ip, Y.W. Heo, T. Steiner, “Recent progress in processing and properties of ZnO”, Progress in Materials Science 50 (2005) 293–340.
[4]許浩承 “以水熱法成長氧化鋅奈米線”, 國立清華大學, 碩士論文(中華民國九十三年九月)
[5]D.N. Montenegro, A.Souissi, C.Martı´nez-Toma´s, V.Mun˜oz-Sanjose´, V.Sallet, “Morphology transitions in ZnO nanorods grown by MOCVD”, Journal of Crystal Growth 359 (2012) 122–128.
[6]J.P. Biethana, V.P. Sirkeli, L. Considine, D.D. Nedeoglo, D. Pavlidis, H.L. Hartnagel, “Photoluminescence study of ZnO nanostructures grown on silicon by MOCVD”, Materials Science and Engineering B 177 (2012) 594–599.
[7]J.F Su, C.Q. Wang, C.J. Tang, Q. Niua, Y.S. Zhang, Z.X. Fub, “Influence of annealing on the structural and optical properties of ZnO films grown by MOCVD”, Journal of Alloys and Compounds 509 (2011) 6102–6105.
[8]I. Kortidis, K. Moschovis, F.A. Mahmoud, G. Kiriakidis, “Structural analysis of aerosol spray pyrolysis ZnO films exhibiting ultra low ozone detection limits at room temperature”, Thin Solid Films 518 (2009) 1208–1213.
[9]M. Krunks, A. Katerski, T. Dedova, I. Oja Acik, A. Mere, “Nanostructured solar cell based on spray pyrolysis deposited ZnO nanorod array”, Solar Energy Materials & Solar Cells 92 (2008) 1016–1019.
[10]N. Kavasoglu, A. Sertap Kavasoglu, “Metal–semiconductor transition in undoped ZnO films deposited by spray pyrolysis”, Physica B 403 (2008) 2807–2810.
[11]N.S. Yua, D.M. Deng, D Yangc, Y. Wang, T.P. Yangc, “ZnO interconnected network nanostructures grown on cracked GaN by the aqueous solution method”, Journal of Alloys and Compounds 505 (2010) 27–30.
[12]J.H. Zheng, J.L. Song, Q. Jiang, J.S. Lian , “Superhydrophobic Behavior and Optical Properties of ZnO Film Fabricated by Hydrothermal Method”, Journal of Materials Science & Technolog 28 (2012) 103–108.
[13]N.Q. Khánh, I. Lukács, Gy. Sáfrán, R. Erdélyi, E. Fülöp, A. Deák, J. Volk , “Effect of nanosphere monolayer on the morphology of ZnO nanowires grown by hydrothermal method”, Materials Letters 79 (2012) 242–244.
[14]L. Cui, H.Y. Zhang, G.G. Wang, F.X. Yang, X.P. Kuang, R. Sun, J.C. Hana, “Effect of annealing temperature and annealing atmosphere on the structure and optical properties of ZnO thin films on sapphire (0 0 0 1) substrates by magnetron sputtering”, Applied Surface Science 258 (2012) 2479–2485.
[15]C. Besleaga, G.E. Stan, A.C. Galca, L. Ion, S. Antohe , “Double layer structure of ZnO thin films deposited by RF-magnetron sputtering on glass substrate”, Applied Surface Science 258 (2012) 8819– 8824.
[16]H.L. Tang, J. Xua, H.J. Li, Y.J. Dong, Y.Z. Wang, F.Wu , “Characterization of ZnO thin film synthesized on alumina-rich spinel substrate by magnetron sputtering”, Applied Surface Science 256 (2010) 4934–4937.
[17]P.T. Hsieh, Y.C. Chen, K.S. Kao, M.S. Lee, C.C. Cheng, “The ultraviolet emission mechanism of ZnO thin film fabricated by sol–gel technology”, Journal of the European Ceramic Society 27 (2007) 3815–3818.
[18]R.J. Winfield, L.H.K. Koh, Shane O’Brien, G.M. Crean, “Excimer laser processing of ZnO thin films prepared by the sol–gel process”, Applied Surface Science 254 (2007) 855–858.
[19]A. Aravind, M.K. Jayaraj, M. Kumar, R. Chandra, “The dependence of structural and optical properties of PLD grown ZnO films on ablation parameters”, Applied Surface Science 286 (2013) 54–60.
[20]S. Roy, N. Banerjee, C.K. Sarkar, P. Bhattacharyya, “Development of an ethanol sensor based on CBD grown ZnO nanorods”, Solid-State Electronics 87 (2013) 43–50.
[21]S. Kahraman, F. Bayansal, H.A. Cetinkara, H.M. Cakmak, H.S. Guder “Characterization of CBD grown ZnO films with high c-axis orientation”, Materials Chemistry and Physics 134 (2012) 1036–1041.
[22]S.H. Yi, S.K. Choi, J.M. Jang, J.A. Kim, W.G. Jung, “Low-temperature growth of ZnO nanorods by chemical bath deposition”, Journal of Colloid and Interface Science 313 (2007) 705–710.
[23]Y. Lare, A. Godoy, L. Cattin, K. Jondo, T. Abachi, F.R. Diaz, M. Morsli, K. Napo, M.A. del Valle, J.C. Berne`de , “ZnO thin films fabricated by chemical bath deposition, used as buffer layer in organic solar cells”, Applied Surface Science 255 (2009) 6615–6619.
[24]K. Jacobs, D. Balitsky, P. Armand, P.L. Papet ,“Low-temperature chemical bath deposition of crystalline ZnO”, Solid State Sciences 12 (2010) 333–338.
[25]T. Terasako, T. Murakami, M. Yagi, S. Shirakata ,“Shape controllability and photoluminescence properties of ZnO nanorods grown by chemical bath deposition”, Thin Solid Films 549 (2013) 292–298.
[26]W.T. Seeber, M.O. Abou-Helal, S. Barth, D. Beil, T. HoE che, H.H. Afify, S.E. Demian, “Transparent semiconducting ZnO:Al thin Rlms prepared by spray pyrolysis”, Materials Science in Semiconductor Processing 2 (1999) 45–55.
[27]E.L. Papadopoulou, M. Varda, K. Kouroupis-Agalou, M. Androulidaki,
E. Chikoidze, P. Galtier, G. Huyberechts, E. Aperathitis ,“Undoped and Al-doped ZnO films with tuned properties grown by pulsed laser deposition”, Thin Solid Films 516 (2008) 8141–8145.
[28]R. Chandramohan, T.A. Vijayan, S. Arumugam, H.B. Ramalingam,
V. Dhanasekaran, K. Sundaram, T. Mahalingam ,“Effect of heat treatment on microstructural and optical properties of CBD grown Al-doped ZnO thin films”, Materials Science and Engineering B 176 (2011) 152–156.
[29]J.H. Lang, Q. Han, C.S. Li, J.H. Yang, X. Li, L.L. Yang, D.D. Wang, H.J. Zhai, M. Gao, Y.J. Zhang, X.Y. Liu, M.B. Wei ,“Effect of Mn doping on the microstructures and photoluminescence properties of CBD derived ZnO nanorods”, Applied Surface Science 256 (2010) 3365–3368.
[30]V. K. Mehta , Principles of Electronics (2008) 26–36.
[31]R. H. Fowler, L. Nordheim, “Electron Emission in Intense Electric Fields”, Proceedings of the Royal Society A 119 (1928) 173–181.
[32]L. Liao, J.C. Lia, D.F. Wang, C. Liu, Q. Fua , “Electron field emission studies on ZnO nanowires”, Materials Letters 59 (2005) 2465–2467.
[33]鄭春滿, 宋植彥, 魏海博, 帖楠, 謝凱, 具有C軸取向〖Al〗^(3+)摻雜型ZnO薄膜的溶膠-凝膠法製備及其性能研究, 國防科技大學學報第34卷第3期
[34]V.R. Shinde, T.P. Gujar, C.D. Lokhande, R.S. Mane, S.H. Han, “Mn doped and undoped ZnO films: A comparative structural,optical and electrical properties study”, Materials Chemistry and Physics 96 (2006) 326–330.
[35]S.K. Neogi, R. Karmakar, A.K. Misra, A. Banerjee, D. Das, S.Bandyopadhyay, “Physical properties of antiferromagnetic Mn doped ZnO samples:Role of impurity phase”, Journal of Magnetism and Magnetic Materials 346 (2013) 130–137.
[36]J.J. Hassan., Z. Hassan, H.A. Hassan, “High-quality vertically aligned ZnO nanorods synthesized by microwave-assisted CBD with ZnO–PVA complex seed layer on Si substrates”, Journal of Alloys and Compounds 509 (2011) 6711–6719.
[37]R. Vinoda, M.J. Bushiri,S.R. Achary,V.M. Sanjosé, “Quenching and blue shift of UV emission intensity of hydrothermally grown ZnO:Mn nanorods”, Materials Science and Engineering B 191 (2015) 1–6.
[38]黃光緯, “水熱法成長鋁摻雜氧化鋅奈米材料與其光電元件之製作”,國立雲林科技大學電子工程學系, 專題報告(中華民國一百零年)
[39]謝振剛, “氧化鋅鋁透明導電膜光、電特性之研究”, 國立中央大學, 碩士論文(中華民國九十四年六月)
[40]W.H. Luo, C.H. Hsu, J.C. Yang, J.S. Fang, “Preparation of the Manganese Zinc oxide transparent conductive thin film by chemical bath deposition”, Journal of Taiwan Society for Metal Heart Treatment.
[41]J.L. Wang, T.Y. Hsieh, P.Y. Yang, C.C. Hwang, D.C. Shye, I.C. Lee, “Oxygen annealing effect on field-emission characteristics of hydrothermally synthesized Al-doped ZnO nanowires”, Surface & Coatings Technology 231 (2013) 423–427.
[42]W. Fang, J.M. Wu, L.T. Lee, Y.H. Hsien,S.C. L, C.H. Chen, “ZnO:Al nanostructures synthesized on pre-deposited aluminum (Al)/Si template: Formation, photoluminescence and electron field emission”, Thin Solid Films 517 (2008) 1268–1273.
[43]S.D. Shinde, S.M. Jejurikar, S.S. Patil, D.S. Joag, S.K. Date, M.A. More, S. Kaimal, T. Shripathi,K.P. Adhi , “Pulsed laser deposited Ga doped ZnO/SiOx/Si(100) thin films and their field emission behavior”, Solid State Sciences 13 (2011) 1724–1730.
[44]P. Wang, X. Zhang, J. Wen, L.L. Wu, H. Gao, E. Zhang, G. Miao, “Synthesis and field-emission properties of novel hierarchical ZnO hexagonal towers”, Journal of Alloys and Compounds 533 (2012) 88–92.



QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top