跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.44) 您好!臺灣時間:2026/01/01 18:36
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:賴昀瑋
研究生(外文):Yun-Wei Lai
論文名稱:日本種稻田魚適應海水過程鳃離子運輸蛋白基因表現及調節
論文名稱(外文):Expression and regulation of gill ion transporters in Japanese medaka (Oryzias latipes) during SW acclimation
指導教授:黃銓珍
指導教授(外文):Chang-Jen Huang
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:生化科學研究所
學門:生命科學學門
學類:生物科技學類
論文種類:學術論文
論文出版年:2008
畢業學年度:96
語文別:英文
論文頁數:55
中文關鍵詞:稻田魚離子運輸蛋白富含粒線體細胞海水適應
外文關鍵詞:medakaion transporterMR cellsgillseawater acclimation
相關次數:
  • 被引用被引用:0
  • 點閱點閱:339
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
廣鹽性的硬骨魚類主要藉調節其離子和滲透壓的平衡來面對環境中鹽度的改變。在現今硬骨魚海水適應的鰓細胞模型中,富含粒線體細胞(Mitochondira-rich cells, MR cells)的離子通道和運輸蛋白負責最主要的離子調節,維持體液的恆定。其中最重要也被研究最透徹離子通道包括:鈉鉀幫浦(Na+/K+-ATPase, NKA)、鈉鉀二氯共通運輸蛋白(Na+/K+/2Cl- cotransporter, NKCC)和纖維性囊腫穿膜傳導調節蛋白(Cystic fibrosis transmembrane conductance regulator, CFTR)。本研究利用日本種稻田魚(Oryzias latipes)作為研究對象,分析這些離子運輸蛋白的生理功能和基因表現,發現日本種稻田魚的存活率測試在適應過海水之後有顯著的增加。顯示出適應過海水的日本種稻田魚應有特別的轉換調控機制維持其存活,因此研究日本種稻田魚可以提供線索以了解鹽度適應性和基因調控的關係。
將日本種稻田魚鰓細胞中離子通道之胺基酸序列個別進行演化樹分析,再利用即時定量聚合酉每連鎖反應(qRT-PCR)分析適應不同環境鹽度的日本種稻田魚鳃組織,發現atp1a1a.1, atp1b1a, atp1b1b, slc12a2a和abcc7可能與海水適應的離子調節相關,因其mRNA會受到海水刺激而表現增加;其中atp1b1a和atp1b1b由海水轉移回淡水表現量會維持增高的情形,可能共同參與維持日本種稻田魚適應過後的海水調節能力。同時以atp1a1a.1, atp1b1b, slc12a2a和abcc7核酸探針標定其基因表現位置,首次提供分子證據直接證實這些基因皆表現在相同的細胞。
另一方面,偵測細胞在的不同環境鹽度適應下增生和死亡的表現,發現轉移到海水時細胞增生和死亡率皆高於淡水;利用olfoxi3做標定發現細胞分化有增加的現象。基於上述的結果,我們認為當日本種稻田魚鰓上的離子通道受到鹽度的刺激,其細胞週期變短,且一些未分化的細胞會加速分化成海水型富含粒線體細胞表現以適應鹽度的改變。綜合上述之結果,本實驗首次提供分子生理證據,證明由淡水轉移到海水時,日本種稻田魚的海水型富含粒線體細胞相關基因參與滲透壓離子調節機制以對抗外在鹽度的改變。
Euryhaline teleosts have to cope with the fluctuating salinities of the environments in which they inhabit during their life time. In current model of gill salt scecretion of seawater- (SW) adaptated teleosts, mitochondria-rich cells (MR cells) play the major roles in the active ion secretion mechanism. The ion secretion mechanism in SW gill MR cells is achieved by the balsolateral Na+/K+-ATPase (NKA) and Na+/K+/2Cl- cotransporter (NKCC), and an apical membrane located cystic fibrosis transmembrane conductance regulator (CFTR). However, this model still lacks sufficient molecular evidences and leaves some controversies in the previous studies.
The present study used Japanese medaka (Oryzias latipes, OL) as the model species to provide molecular and physiological evidence to support the roles of the relevant transporters in the current NaCl secretion model of SW type MR cells. The mortality experiment showed that OL enhanced their salinity adaptability after a pre-acclimation to SW and even after back to FW for 1 wk. This study examined the mRNA expression patterns of 8 transporter isoforms, and found that 3 NKA isoforms (atp1a1a.1, atp1b1a and atp1b1b), 1 NKCC (slc12a1a) and 1 CFTR (abcc7) mRNA levels were up-regulated during SW exposure, suggesting that these genes may play critical roles in salt secretion. Interestingly, the elevated mRNA levels of atp1b1b and slc12a2a in SW medaka were prolonged even after transfer back to FW for 1 wk, indicating that occurrence of a latent salt secretion mechanism of these 2 genes may be necessary for the subsequent salinity challenge as we mentioned above. Furthermore, atp1a1a.1, atp1b1b, slc12a2a and abcc7 were found to be co-expressed in the same MR cell, providing the first molecular evidence for their isoform-specific identities.
The cell number of proliferation (by PH3 stainning) and apoptosis (by TUNEL assay) in gill MR cells showed that the gill cell’s turnover rate is faster in SW than in FW. In addition, olfoxi3 expression indicated the differentiation of MR cells during SW acclimation. NKCC and CFTR mRNA expression levels highly related to the number of SW-type MR cells. According to these results, we proposed that the differentiation of immature cells into SW-type MR cells can be accelerated to enhance NaCl secretion pathway in SW.
In summary, several isoforms were isolated from gill MR cells of OL, and in vivo molecular evidences demonstrated their roles in iono/osmo-regulation and cell differentiation mechanisms in fish gills. This supports the notion that the expressions of these ion transporters correlate with the NaCl secretion function in MR cells, and also offer new insights into the studies on salinity tolerance in euryhaline teleosts.
Table of content
中文摘要…..........…………………………………………………………...1
Abstract………….………………………………………………………….3
Introducation…….…………………………………………………………...5
Salinity acclimation mechanism in euryhaline teleosts………………………….....5
Transporters related to salinity acclimation………………………………………6
Differentiation of MR cells………………….…………………………………8
Medaka as a model to explore salinity acclimation mechanism………………….....9
Aims of study………………………………………………………………..10
Materials and Methods……………………………………………………...12
Animals…………………………………………………….........................12
Acclimation experiments……………………………………………………..12
Preparation of total RNA……………………………………………………..13
Reverse transcription-PCR analysis……………………………………………13
Gene expressions in different tissues…………………………………………...15
Molecular cloning and sequencing analysis...…………………………………...15
Fluorescence double in situ hybridization………………………………………16
Quantitative real-time PCR …………………………………………………...17
Phospho-Histone H3 staining………………………………………………….18
Indirect TUNEL labeling assay………………………………………………..18
Statistical analysis……………………………………………………............19
Results……………………………………………………..........................20
Seawater acclimation and survival rate………………………............................20

Phylogenetic analysis of medaka genes………………………..........................20
RT-PCR analysis of gene expressions in different tissues………...........................21
Effects of salinity on mRNA expressions of ion transporters in medaka gills….…...22
Whole-mount in situ hybridization expression of NKA, NKCC and CFTR genes…..23
Cell proliferation and apoptosis……….............................................................23
Time course changes of foxi3, atp1a1a.1, atp1b1b and slc12a2a gene expressions rates in medaka gills after transfer to BW/SW.............................................................24
Discussion………………………………………………….........................25
References………………………………………………….........................33
Tables…………………………………………………................................41
Figures…………………………………………………..............................42
Barrett, K. E. and Keely, S. J. (2000). Chloride secretion by the intestinal epithelium: molecular basis and regulatory aspects. Annu Rev Physiol 62, 535-72.
Blanco, G. and Mercer, R. W. (1998). Isozymes of the Na-K-ATPase: heterogeneity in structure, diversity in function. Am J Physiol 275, F633-50.
Bystriansky, J. S., Richards, J. G., Schulte, P. M. and Ballantyne, J. S. (2006). Reciprocal expression of gill Na+/K+-ATPase alpha-subunit isoforms alpha1a and alpha1b during seawater acclimation of three salmonid fishes that vary in their salinity tolerance. J Exp Biol 209, 1848-58.
Cutler, C. P., Brezillon, S., Bekir, S., Sanders, I. L., Hazon, N. and Cramb, G. (2000). Expression of a duplicate Na,K-ATPase beta(1)-isoform in the European eel (Anguilla anguilla). Am J Physiol 279, R222-9.
Cutler, C. P. and Cramb, G. (2002). Two isoforms of the Na+/K+/2Cl- cotransporter are expressed in the European eel (Anguilla anguilla). Biochim Biophys Acta 1566, 92-103.
Dantzler, W. H. (1989a). Membrane dynamics in relation to fluid absorption in reptilian proximal renal tubules. Am J Physiol 257, R982-8.
Dantzler, W. H. (1989b). Organic acid (or anion) and organic base (or cation) transport by renal tubules of nonmammalian vertebrates. J Exp Zool 249, 247-57.
Delpire, E. and Mount, D. B. (2002). Human and murine phenotypes associated with defects in cation-chloride cotransport. Annu Rev Physiol 64, 803-43.
Esaki, M., Hoshijima, K., Kobayashi, S., Fukuda, H., Kawakami, K. and Hirose, S. (2007). Visualization in zebrafish larvae of Na+ uptake in mitochondria-rich cells whose differentiation is dependent on foxi3a. Am J Physiol 292, R470-80.
Evans, D. H., Piermarini, P. M. and Choe, K. P. (2005). The multifunctional fish gill: dominant site of gas exchange, osmoregulation, acid-base regulation, and excretion of nitrogenous waste. Physiol Rev 85, 97-177.
Feng, S. H., Leu, J. H., Yang, C. H., Fang, M. J., Huang, C. J. and Hwang, P. P. (2002). Gene expression of Na+-K+-ATPase alpha 1 and alpha 3 subunits in gills of the teleost Oreochromis mossambicus, adapted to different environmental salinities. Mar Biotechnol 4, 379-91.
Foskett, J. K. and Scheffey, C. (1982). The chloride cell: definitive identification as the salt-secretory cell in teleosts. Science 215, 164-6.
Haas, M. and Forbush, B., 3rd. (2000). The Na-K-Cl cotransporter of secretory epithelia. Annu Rev Physiol 62, 515-34.
Hawkings, G. S., Galvez, F. and Goss, G. G. (2004). Seawater acclimation causes independent alterations in Na+/K+- and H+-ATPase activity in isolated mitochondria-rich cell subtypes of the rainbow trout gill. J Exp Biol 207, 905-12.
He, S., Shelly, D. A., Moseley, A. E., James, P. F., James, J. H., Paul, R. J. and Lingrel, J. B. (2001). The alpha(1)- and alpha(2)-isoforms of Na-K-ATPase play different roles in skeletal muscle contractility. Am J Physiol 281, R917-25.
Hiroi, J., McCormick, S. D., Ohtani-Kaneko, R. and Kaneko, T. (2005). Functional classification of mitochondrion-rich cells in euryhaline Mozambique tilapia (Oreochromis mossambicus) embryos, by means of triple immunofluorescence staining for Na+/K+-ATPase, Na+/K+/2Cl- cotransporter and CFTR anion channel. J Exp Biol 208, 2023-36.
Hiroi, J., Yasumasu, S., McCormick, S. D., Hwang, P. P. and Kaneko, T. (2008). Evidence for an apical Na-Cl cotransporter involved in ion uptake in a teleost fish. J Exp Biol Inpress.
Hirose, S., Kaneko, T., Naito, N. and Takei, Y. (2003). Molecular biology of major components of chloride cells. Comp Biochem Physiol 136, 593-620.
Hoffmann, E. K., Hoffmann, E., Lang, F. and Zadunaisky, J. A. (2002). Control of Cl- transport in the operculum epithelium of Fundulus heteroclitus: long- and short-term salinity adaptation. Biochim Biophys Acta 1566, 129-39.
Horisberger, J. D., Jaunin, P., Reuben, M. A., Lasater, L. S., Chow, D. C., Forte, J. G., Sachs, G., Rossier, B. C. and Geering, K. (1991). The H,K-ATPase beta-subunit can act as a surrogate for the beta-subunit of Na,K-pumps. J Biol Chem 266, 19131-4.
Hsiao, C. D., Tsai, W. Y., Horng, L. S. and Tsai, H. J. (2003). Molecular structure and developmental expression of three muscle-type troponin T genes in zebrafish. Dev Dyn 227, 266-79.
Hsiao, C. D., You, M. S., Guh, Y. J., Ma, M., Jiang, Y. J. and Hwang, P. P. (2007). A positive regulatory loop between foxi3a and foxi3b is essential for specification and differentiation of zebrafish epidermal ionocytes. PLoS ONE 2, e302.
Hwang, P. P. and Lee, T. H. (2007). New insights into fish ion regulation and mitochondrion-rich cells. Comp Biochem Physiol 148, 479-97.
Hwang, P. P. and Sun, C. M. (1989). Putative role of adenohypophysis in the osmoregulation of tilapia larvae (Oreochromis mossambicus; Teleostei): an ultrastructure study. Gen Comp Endocrinol 73, 335-41.
Inoue, K. and Takei, Y. (2002). Diverse adaptability in oryzias species to high environmental salinity. Zool Sci 19, 727-34.
Inoue, K. and Takei, Y. (2003). Asian medaka fishes offer new models for studying mechanisms of seawater adaptation. Comp Biochem Physiol 136, 635-45.
James, P. F., Grupp, I. L., Grupp, G., Woo, A. L., Askew, G. R., Croyle, M. L., Walsh, R. A. and Lingrel, J. B. (1999). Identification of a specific role for the Na,K-ATPase alpha 2 isoform as a regulator of calcium in the heart. Mol Cell 3, 555-63.
Janicke, M., Carney, T. J. and Hammerschmidt, M. (2007). Foxi3 transcription factors and Notch signaling control the formation of skin ionocytes from epidermal precursors of the zebrafish embryo. Dev Biol 307, 258-71.
Kaneko, T., Shiraishi, K., Katoh, F., S., H. and Hiroi, J. (2002). Chloride cells during early life stages of fish and their functional differentiation. Fisheries Sci 68, 1-9.
Katoh, F. and Kaneko, T. (2003). Short-term transformation and long-term replacement of branchial chloride cells in killifish transferred from seawater to freshwater, revealed by morphofunctional observations and a newly established ''time-differential double fluorescent staining'' technique. J Exp Biol 206, 4113-23.
Lee, T. H., Feng, S. H., Lin, C. H., Hwang, Y. H., Huang, C. L. and Hwang, P. P. (2003). Ambient salinity modulates the expression of sodium pumps in branchial mitochondria-rich cells of Mozambique tilapia, Oreochromis mossambicus. Zool Sci 20, 29-36.
Lin, C. H. and Lee, T. H. (2005). Sodium or potassium ions activate different kinetics of gill Na, K-ATPase in three seawater- and freshwater-acclimated euryhaline teleosts. J Exp Zool 303, 57-65.
Lin, L. Y. and Hwang, P. P. (2001). Modification of morphology and function of integument mitochondria-rich cells in tilapia larvae (Oreochromis mossambicus) acclimated to ambient chloride levels. Physiol Biochem Zool 74, 469-76.
Lin, L. Y. and Hwang, P. P. (2004). Mitochondria-rich cell activity in the yolk-sac membrane of tilapia (Oreochromis mossambicus) larvae acclimatized to different ambient chloride levels. J Exp Biol 207, 1335-44.
Lingrel, J. B. (1992). Na,K-ATPase: isoform structure, function, and expression. J Bioenerg Biomembr 24, 263-70.
Lingrel, J. B., Van Huysse, J., O''Brien, W., Jewell-Motz, E. and Schultheis, P. (1994). Na,K-ATPase: structure-function studies. Ren Physiol Biochem 17, 198-200.
Lytton, J., Lin, J. C. and Guidotti, G. (1985). Identification of two molecular forms of (Na+,K+)-ATPase in rat adipocytes. Relation to insulin stimulation of the enzyme. J Biol Chem 260, 1177-84.
Marshall, W. S. (2002). Na+, Cl-, Ca2+ and Zn2+ transport by fish gills: retrospective review and prospective synthesis. J Exp Zool 293, 264-83.
Nilsen, T. O., Ebbesson, L. O., Madsen, S. S., McCormick, S. D., Andersson, E., Bjornsson, B. T., Prunet, P. and Stefansson, S. O. (2007). Differential expression of gill Na+,K+-ATPase alpha- and beta-subunits, Na+,K+,2Cl- cotransporter and CFTR anion channel in juvenile anadromous and landlocked Atlantic salmon Salmo salar. J Exp Biol 210, 2885-96.
Perry, S. F. (1997). The chloride cell: structure and function in the gills of freshwater fishes. Annu Rev Physiol 59, 325-47.
Richards, J. G., Semple, J. W., Bystriansky, J. S. and Schulte, P. M. (2003). Na+/K+-ATPase alpha-isoform switching in gills of rainbow trout (Oncorhynchus mykiss) during salinity transfer. J Exp Biol 206, 4475-86.
Russell, J. M. (2000). Sodium-potassium-chloride cotransport. Physiol Rev 80, 211-76.
Scott, G. R., Richards, J. G., Forbush, B., Isenring, P. and Schulte, P. M. (2004). Changes in gene expression in gills of the euryhaline killifish Fundulus heteroclitus after abrupt salinity transfer. Am J Physiol 287, C300-9.
Silva, P., Solomon, R. J. and Epstein, F. H. (1996). The rectal gland of Squalus acanthias: a model for the transport of chloride. Kidney Int 49, 1552-6.
Singer, T. D., Tucker, S. J., Marshall, W. S. and Higgins, C. F. (1998). A divergent CFTR homologue: highly regulated salt transport in the euryhaline teleost F. heteroclitus. Am J Physiol 274, C715-23.
Sverdlov, E. D. (1991). The genes of Na,K-ATPase, a selfreview. Genetica 85, 91-101.
Sweadner, K. J. (1989). Isozymes of the Na+/K+-ATPase. Biochim Biophys Acta 988, 185-220.
Tipsmark, C. K., Madsen, S. S. and Borski, R. J. (2004). Effect of salinity on expression of branchial ion transporters in striped bass (Morone saxatilis). J Exp Zool 301, 979-91.
Urayama, O. and Nakao, M. (1979). Organ secificity of rat sodium- and potassium-activated adenosine triphosphatase. J Biochem 86, 1371-81.
Wakamatsu, Y. a. O., K. (2002). Medaka (Oryzias latipes) as a fish model for endocrine-disrupting substance testing. Env Sci 419-426.
Wilson, J. M., Whiteley, N. M. and Randall, D. J. (2002). Ionoregulatory changes in the gill epithelia of coho salmon during seawater acclimation. Physiol Biochem Zool 75, 237-49.
Wittbrodt, J., Shima, A. and Schartl, M. (2002). Medaka--a model organism from the far East. Nat Rev Genet 3, 53-64.
Woo, A. L., James, P. F. and Lingrel, J. B. (2000). Sperm motility is dependent on a unique isoform of the Na,K-ATPase. J Biol Chem 275, 20693-9.
Xu, J. C., Lytle, C., Zhu, T. T., Payne, J. A., Benz, E., Jr. and Forbush, B. (1994). Molecular cloning and functional expression of the bumetanide-sensitive Na-K-Cl cotransporter. Proc Natl Acad Sci U S A 91, 2201-5.
Zadunaisky, J. A. (1996). Chloride cells and osmoregulation. Kidney Int 49, 1563-7.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top