跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.41) 您好!臺灣時間:2025/09/01 12:04
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:沈亮岑
研究生(外文):Liang-Tsen Shen
論文名稱:三維角色模型之SD風格轉換技術
論文名稱(外文):Super-Deformed Stylizing 3D Character Models
指導教授:陳炳宇陳炳宇引用關係
口試委員:梁容輝張鈞法紀明德
口試日期:2012-07-18
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:資訊網路與多媒體研究所
學門:電算機學門
學類:網路學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:57
中文關鍵詞:SD風格化三維角色模型變形風格轉換
外文關鍵詞:super-deformeddeformationskeleton
相關次數:
  • 被引用被引用:0
  • 點閱點閱:710
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
SD (super-deformed) 源於日本漫畫與動畫,是一種誇張化角色使其看起來更為可愛的特殊風格。SD風格的角色被廣泛應用在各個領域,常見於許多動畫、圖學電影,或是遊戲。然而,創造一個SD風格的三維角色模型常需要專業技術與大量的時間及功夫。本論文提出一個將平常的三維角色模型轉換成具有SD風格的三維角色模型的技術。我們觀察到一些SD風格的特性,然後根據這些特性推導出能量函式並最佳化。使用者也可以給定一些與身體比例有關的參數與強化角色特徵來客製化角色。透過我們的技術,即使是剛接觸我們技術的使用者也可以在數秒以內創造一個視覺上令人感覺舒適的結果。

Super-deformed, SD, is a specific artistic style for Japanese manga and anime which exaggerates characters in the goal of appearing cute and funny. The SD style characters are widely used, and can be seen in many anime, CG movies, or games. However, to create an SD model often requires professional skills and considerable time and effort. In this thesis, we present a novel technique to generate an SD style counterpart of a normal 3D character model. Our approach uses an optimization guided by a number of constraints that can capture the properties of the SD style. Users can also customize the results by specifying a small set of parameters related to the body proportions and the emphasis of the signature characteristics. With our technique, even a novel user can generate visually pleasing SD models in seconds.

Acknowledgments i
致謝ii
中文摘要iii
Abstract iv
1 Introduction 1
1.1 Introduction of SD . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Challenges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Proposed System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.4 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.5 Thesis Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2 Related Work 6
2.1 Mesh Deformation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.2 Geometry Processing . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.3 Artistic Stylization . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
3 SD Stylization 10
3.1 Character Model and Embedded Skeleton . . . . . . . . . . . . . . . . 13
3.2 Skeleton Deformation . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.3 Mesh Deformation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.3.1 Body Proportion Constraint . . . . . . . . . . . . . . . . . . . 18
3.3.2 Primitive Fitting Constraint . . . . . . . . . . . . . . . . . . . 22
3.3.3 Detail Smoothing Constraint . . . . . . . . . . . . . . . . . . . 23
3.3.4 Signature Characteristic Constraint . . . . . . . . . . . . . . . 24
3.3.5 Total Energy and Optimization . . . . . . . . . . . . . . . . . . 30
4 Results and Discussion 33
4.1 Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
4.2 User Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
4.3 Limitation and Future Work . . . . . . . . . . . . . . . . . . . . . . . 48
5 Conclusion 52
Bibliography 53

[Alexa, 2003] Alexa, M. (2003). Differential coordinates for local mesh morphing and deformation. The Visual Computer, 19(2-3):105–114.
[Baran and Popovi’c, 2007] Baran, I. and Popovi’c, J. (2007). Automatic rigging and animation of 3D characters. ACM TOG, 26(3):72:1–72:8.
[Botsch and Kobbelt, 2003] Botsch, M. and Kobbelt, L. (2003). Multiresolution surface representation based on displacement volumes. Computer Graphics Forum, 22(3):483–492.
[Bousseau et al., 2007] Bousseau, A., Neyret, F., Thollot, J., and Salesin, D. (2007). Video watercolorization using bidirectional texture advection. ACM TOG, 26(3).
[Cignoni et al., 1997] Cignoni, P., Montani, C., and Scopigno, R. (1997). A comparison of mesh simplification algorithms. Computers & Graphics, 22:37–54.
[Grabli et al., 2010] Grabli, S., Turquin, E., Durand, F., and Sillion, F. X. (2010). Programmable rendering of line drawing from 3D scenes. ACM TOG, 29(2):18:1–18:20.
[Huang et al., 2006] Huang, J., Shi, X., Liu, X., Zhou, K., Wei, L.-Y., Teng, S.-H., Bao, H., Guo, B., and Shum, H.-Y. (2006). Subspace gradient domain mesh deformation. ACM TOG, 25(3):1126–1134.
[Igarashi et al., 1999] Igarashi, T., Matsuoka, S., and Tanaka, H. (1999). Teddy: a sketching interface for 3D freeform design. In ACM SIGGRAPH 1999 Conference Proceedings, pages 409–416.
[Jacobson et al., 2011] Jacobson, A., Baran, I., Popovi’c, J., and Sorkine, O. (2011). Bounded biharmonic weights for real-time deformation. ACM TOG, 30(4):78:1–78:8.
[Kowalski et al., 1999] Kowalski, M. A., Markosian, L., Northrup, J. D., Bourdev, L., Barzel, R., Holden, L. S., and Hughes, J. F. (1999). Art-based rendering of fur, grass, and trees. In ACM SIGGRAPH 1999 Conference Proceedings, pages 433–438.
[Lewis et al., 2000] Lewis, J. P., Cordner, M., and Fong, N. (2000). Pose space deformation: a unified approach to shape interpolation and skeleton-driven deformation. In ACM SIGGRAPH 2000 Conference Proceedings, pages 165–172.
[Lindstrom, 2000] Lindstrom, P. (2000). Out-of-core simplification of large polygonal models. In ACM SIGGRAPH 2000 Conference Proceedings, pages 259–262.
[Lipman et al., 2004] Lipman, Y., Sorkine, O., Cohen-Or, D., Levin, D., R‥ossl, C., and Seidel, H.-P. (2004). Differential coordinates for interactive mesh editing. In Proceedings of Shape Modeling International 2004, pages 181–190.
[Luebke et al., 2002] Luebke, D., Watson, B., Cohen, J. D., Reddy, M., and Varshney, A. (2002). Level of Detail for 3D Graphics. Elsevier Science Inc., New York, NY, USA.
[Magnenat-Thalmann et al., 1988] Magnenat-Thalmann, N., Laperri`ere, R., and Thalmann, D. (1988). Joint-dependent local deformations for hand animation and object grasping. In Proceedings of Graphics Interface 1988, pages 26–33.
[Nealen et al., 2007] Nealen, A., Igarashi, T., Sorkine, O., and Alexa, M. (2007). FiberMesh: designing freeform surfaces with 3D curves. ACM TOG, 26(3):41:1–41:8.
[Qu et al., 2008] Qu, Y., Pang, W.-M., Wong, T.-T., and Heng, P.-A. (2008). Richness-preserving manga screening. ACM TOG, 27(5):155:1–155:8.
[Rivers et al., 2010] Rivers, A., Igarashi, T., and Durand, F. (2010). 2.5D cartoon models. ACM TOG, 29:59:1–59:7.
[Shontz and Vavasis, 2003] Shontz, S. M. and Vavasis, S. A. (2003). A mesh warping algorithm based on weighted Laplacian smoothing. In Proceedings of the 12th International Meshing Roundtable, pages 147–158.
[Sorkine et al., 2004] Sorkine, O., Cohen-Or, D., Lipman, Y., Alexa, M., R‥ossl, C., and Seidel, H.-P. (2004). Laplacian surface editing. In Proceedings of the 2004 Eurographics/ACM SIGGRAPH Symposium on Geometry Processing, pages 175–184.
[Toledo, 2003] Toledo, S. (2003). Taucs: A library of sparse linear solvers. http://www.tau.ac.il/stoledo/taucs/.
[Winnem‥oller et al., 2006] Winnem‥oller, H., Olsen, S. C., and Gooch, B. (2006). Realtime video abstraction. ACM TOG, 25(3):1221–1226.
[Zhou et al., 2005] Zhou, K., Huang, J., Snyder, J., Liu, X., Bao, H., Guo, B., and Shum, H.-Y. (2005). Large mesh deformation using the volumetric graph Laplacian. ACM TOG, 24(3):496–503.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top