跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.219) 您好!臺灣時間:2025/11/30 14:18
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:黃巧俐
研究生(外文):Chiao Li Huang
論文名稱:以超臨界二氧化碳發泡PVDF/PMMA摻 合體為基材之奈米複合材料與發泡體之性質探討
論文名稱(外文):Foaming of PVDF/PMMA Blend-based Nanocomposites through sc-CO2 and the Foams’ Properties Characterization
指導教授:邱方遒
指導教授(外文):F. C. Chiu
學位類別:碩士
校院名稱:長庚大學
系所名稱:化工與材料工程學系
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2010
畢業學年度:98
論文頁數:95
中文關鍵詞:sc-CO2PVDFPMMA發泡奈米複合材料
外文關鍵詞:sc-CO2PVDFPMMANanocompositesFoams
相關次數:
  • 被引用被引用:0
  • 點閱點閱:512
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
摘要
本研究藉由 sc-CO2發泡以 PVDF/PMMA 摻合體為基材之奈米複合材料,此方法的優點在於 sc-CO2發泡時間短,且過程不需要使用有機溶劑。研究中改變PVDF/PMMA摻合體組成比例、黏土種類、發泡溫度與發泡壓力,藉以探討不同變因對PVDF、PMMA與黏土所形成二或三成分系統奈米複合材料發泡孔洞形態之影響。發泡後藉由XRD探討PVDF晶體結構,並以XRD與TEM觀察黏土分散性,以及利用SEM分析材料剖面相形態。
XRD結果顯示: PVDF晶體結構只受黏土種類或高分子鏈與 sc-CO2之間的作用力影響,並不受 sc-CO2發泡條件不同而影響。XRD與TEM觀察結果顯示: 30B在PVDF或PMMA基材中分散性優於20A;於發泡之PVDF/PMMA/Clay奈米複合材料中,30B的層間距比未發泡系統更寬。SEM結果顯示:以PVDF為主體相之摻合體,其發泡孔洞是由 PVDF 球晶中心開始形成。其微孔洞結構是sc-CO2溶解進入高分子鏈的無定形區域與結晶區域成核成長,呈現放射狀微孔洞結構。但是當摻合體中PVDF 含量小於50 wt%時,所形成的泡孔結構不再是以放射狀延伸,而是以不規則且不完整的泡孔結構存在。此外,由SEM觀察發泡後之奈米複合材料,樣品的剖面相形態為泡孔與泡孔連接在一起的微孔洞結構,證明黏土層狀結構會限制發泡的成長過程。研究中亦探討與比較了未發泡與發泡樣品之熔融行為。

Abstract
The foaming of PVDF/PMMA blend-based nanocomposites through sc-CO2, and the resulting foams’ properties were studied. Two kinds of organoclays (20A and 30B) served as the nanofillers for the composites preparation. XRD patterns show that foaming condition and PMMA content did not affect the development of α crystalline form of PVDF, but the presence of organoclays induced the  crystalline form of PVDF. The 30B exhibited a better compatibility with PVDF/PMMA than that of 20A as revealed by XRD and TEM experiments. SEM images show that, depending on the foaming condition and sample’s formulation, various cell morphologies of the foams were developed. For instance, the spherulitic structure of PVDF exerted a significant effect on the cell morphology of PVDF-rich foams. The cell appeared in the amorphous domains, which are mainly located between the PVDF spherulites and their interlamellar regions. The cell size was noted to increase with increasing PMMA content in the blends; the additions of organoclays led to a reduction in the cell size. The interesting crystallization and melting behaviors of the prepared samples were observed as well.

目錄
論文指導教授推薦 i
論文口試委員審定書 ii
長庚大學碩士紙本論文著作授權書 iii
誌謝 iv
摘要 v
Abstract vi
目錄 vii
圖目錄 ix
表目錄 xiii
第一章 緒論 1
第二章 文獻回顧 3
2.1 聚偏氟乙烯 ( Poly(vinylidene fluoride), PVDF ) 3
2.2 聚甲基丙烯酸甲酯 ( Poly(methyl methacrylate), PMMA ) 4
2.3 PVDF/PMMA摻合體相關文獻 4
2.4 PVDF與PMMA 奈米複合材料相關文獻 5
2.5 超臨界流體發泡 6
2.5.1 簡介 6
2.5.2 超臨界流體應用於高分子領域 7
2.5.3 超臨界二氧化碳 9
2.5.4 超臨界二氧化碳發泡 10
2.5.5 PVDF與PMMA發泡 12
2.5.6 高分子奈米複合材料發泡 13
第三章 實驗 15
3.1 材料 15
3.2 儀器設備 16
3.3 實驗步驟 18
3.4 性質分析 19
3.4.1 微差掃描熱卡計 ( DSC ) 19
3.4.2廣角X光繞射儀( XRD) 19
3.4.3掃描式電子顯微鏡( SEM ) 19
3.4.4 穿透式電子顯微鏡 ( TEM ) 19
第四章 結果與討論 20
4.1 XRD 分析 20
4.1.1黏土分散性 20
4.1.2 晶體結構 22
4.2 TEM分析 26
4.3 SEM分析 27
4.3.1 樣品組成比例對發泡結構的影響 27
4.3.2 發泡溫度對發泡體結構的影響 29
4.3.3 發泡壓力對發泡體結構影響 30
4.4 DSC分析 31
第五章 結論 34
參考文獻 36

圖目錄
圖2-1 PVDF分子結構式 45
圖2-2 PVDF各種晶型之分子鏈結構圖 45
圖2-3 PMMA分子結構式 46
圖2-4 CO2 壓力-溫度相圖 46
圖2-5 以CO2發泡高分子過程 47
圖2-6 CO2相圖[26] 47
圖3-1 sc-CO2發泡實驗裝置圖 48
圖3-2 sc-CO2發泡與樣品檢測流程圖 49
圖4-1 20A與30B 之XRD 圖譜 50
圖4-2 含20A複合材料於2θ = 1.5o ~ 10o 之XRD圖譜: (a)未發泡;(b)120 ℃/20 MPa/30 min;(c)140 ℃/20 MPa/30 min;(d)120 ℃/30 MPa/30 min;(e)140 ℃/30 MPa/30 min 51
圖4-3 含30B複合材料於2θ = 1.5o ~ 10o 之XRD圖譜: (a)未發泡;(b)120 ℃/20 MPa/30 min;(c)140 ℃/20 MPa/30 min;(d)120 ℃/30 MPa/30 min;(e)140 ℃/30 MPa/30 min 52
圖4-4 摻合體樣品於2θ = 10o ~ 40o 之XRD圖譜:(a)未發泡;(b)120 ℃/20 MPa/30 min;(c)140 ℃/20 MPa/30 min;(d)120 ℃/30 MPa/30 min;(e)140 ℃/30 MPa/30 min 53
圖4-5 含20A複合材料於2θ = 10o ~ 40o之XRD圖譜:(a)未發泡;(b)120 ℃/20 MPa/30 min;(c)140 ℃/20 MPa/30 min;(d)120 ℃/30 MPa/30 min;(e)140 ℃/30 MPa/30 min 54
圖4-6 含30B複合材料於2θ = 10o ~ 40o之XRD 圖譜:(a)未發泡;(b)120 ℃/20 MPa/30 min;(c)140 ℃/20 MPa/30 min;(d)120 ℃/30 MPa/30 min;(e)140 ℃/30 MPa/30 min 55
圖4-7 PVDF/PMMA經不同條件下發泡於2θ = 10o~40o之XRD圖譜: (a) PVDF 80;(b)PVDF 60;(c) PVDF 50 56
圖4-8 PVDF/PMMA/20A經不同條件下發泡於2θ = 10o~40o之 XR圖譜: (a) PVDF 80-A;(b)PVDF 60-A;(c) PVDF 50-A 57
圖4-9 PVDF/PMMA/30B經不同條件下發泡於2θ = 10o~40o之XRD圖譜: (a) PVDF 80-B;(b)PVDF 60-B;(c) PVDF 50-B 58
圖4-10 奈米複合材料之 TEM 照片: (a) PVDF 100-A;(b) PMMA 100-A;(c) PVDF 100-B;(d) PMMA 100-B;(e) PVDF 60-A;(f) PVDF 60-B 59
圖4-11 樣品於120 ℃/20 MPa/30 min條件發泡之SEM照片: (a-1)和(a-2)為 PVDF 100;(b-1)和(b-2)為 PMMA 100 60
圖4-12樣品於120 ℃/20 MPa/30 min條件發泡之SEM照片:(a) PVDF80;(b)PVDF60;(c) PVDF50;(d)PVDF40;(e)PVDF20 61
圖4-13 樣品於120 ℃/20 MPa/30 min條件發泡之SEM照片: (a-1)和(a-2)為 PVDF 100-A;(b-1)和(b-2)為 PMMA 100 - 62
圖4-14 樣品於120 ℃/20 MPa/30 min條件發泡之SEM照片:(a) PVDF80-A;(b)PVDF60-A;(c) PVDF50-A;(d)PVDF40-A;(e)PVDF20-A 63
圖4-15 樣品於120 ℃/20 MPa/30 min條件發泡之SEM照片: (a-1)和(a-2)為 PVDF 100-B;(b-1)和(b-2)為 PMMA 100-B 64
圖4-16 樣品於120 ℃/20 MPa/30 min條件發泡之SEM照片:(a) PVDF80-B;(b)PVDF60-B;(c) PVDF50-B;(d)PVDF40-B;(e)PVDF20-B 65
圖4-17 樣品於120 ℃/20 MPa/30 min條件發泡之SEM照片: (a)PVDF 100;(b) PMMA 100;(c) PVDF 100-A;(d) PMMA 100-A;(e) PVDF 100-B;(f) PMMA 100-B 66
圖4-18 樣品於120 ℃/20 MPa/30 min條件發泡之SEM照片: (a) PVDF 80;(b) PVDF 60;(c) PVDF 50;(d) PVDF 80-A;(e) PVDF 60-A;(f) PVDF 50-A;(g) PVDF 80-B;(h) PVDF 60-B;(i) PVDF 50-B 67
圖4-19 樣品於120 ℃/20 MPa/30 min條件發泡之SEM照片:(a) PVDF 50;(b) PVDF 40;(c) PVDF 20;(d) PVDF 50-A(e) PVDF 40-A;(f) PVDF 20-A;(g) PVDF 50-B;(h) PVDF 40-B;(i) PVDF 20-B 68
圖4-20樣品於140 ℃/20 MPa/30 min條件發泡之SEM照片: (a)PVDF 100;(b) PMMA 100;(c) PVDF 100-A;(d) PMMA 100-A;(e) PVDF 100-B;(f) PMMA 100-B 69
圖4-21 樣品於140 ℃/20 MPa/30 min條件發泡之SEM照片: (a) PVDF 80;(b) PVDF 60;(c) PVDF 50;(d) PVDF 80-A;(e) PVDF 60-A;(f) PVDF 50-A;(g) PVDF 80-B;(h) PVDF 60-B;(i) PVDF 50-B 70
圖4-22 樣品於140 ℃/20 MPa/30 min條件以發泡之SEM照片:(a) PVDF 50;(b) PVDF 40;(c) PVDF 20;(d) PVDF 50-A(e) PVDF 40-A;(f) PVDF 20-A;(g) PVDF 50-B;(h) PVDF 40-B;(i) PVDF 20-B 71
圖4-23 樣品於120 ℃/30 MPa/30 min條件發泡之SEM照片(a)PVDF 100;(b) PMMA 100;(c) PVDF 100-A;(d) PMMA 100-A;(e) PVDF 100-B;(f) PMMA 100-B 72
圖4-24 樣品於120 ℃/30 MPa/30 min條件發泡之SEM照片: (a) PVDF 80;(b) PVDF 60;(c) PVDF 50;(d) PVDF 80-A;(e) PVDF 60-A;(f) PVDF 50-A;(g) PVDF 80-B;(h) PVDF 60-B;(i) PVDF 50-B 73
圖4-25 樣品於120 ℃/30 MPa/30 min條件發泡之SEM照片:(a) PVDF 50;(b) PVDF 40;(c) PVDF 20;(d) PVDF 50-A(e) PVDF 40-A;(f) PVDF 20-A;(g) PVDF 50-B;(h) PVDF 40-B;(i) PVDF 20-B 74
圖4-26 樣品於140 ℃/30 MPa/30 min條件發泡之SEM照片(a)PVDF 100;(b) PMMA 100;(c) PVDF 100-A;(d) PMMA 100-A;(e) PVDF 100-B;(f) PMMA 100-B 75
圖4-27 樣品於140 ℃/30 MPa/30 min條件發泡之SEM照片: (a) PVDF 80;(b) PVDF 60;(c) PVDF 50;(d) PVDF 80-A;(e) PVDF 60-A;(f) PVDF 50-A;(g) PVDF 80-B;(h) PVDF 60-B;(i) PVDF 50-B 76
圖4-28 樣品於140 ℃/30 MPa/30 min條件發泡之SEM照片:(a) PVDF 50;(b) PVDF 40;(c) PVDF 20;(d) PVDF 50-A(e) PVDF 40-A;(f) PVDF 20-A;(g) PVDF 50-B;(h) PVDF 40-B;(i) PVDF 20-B 77
圖4-29 sc-CO2進入黏土層狀結構中膨潤高分子示意圖 78
圖4-30 PVDF/PMMA摻合體以10 ℃/min 升溫之DSC 圖譜:(a)120 ℃/20 MPa/30 min;(b)140 ℃/20 MPa/30 min;(c)120 ℃/30 MPa/30 min;(d)140 ℃/30 MPa/30 min 79
圖4-31 含20A之複合材料以10 ℃/min 升溫之DSC 圖譜:(a)120 ℃/20 MPa/30 min;(b)140 ℃/20 MPa/30 min;(c)120 ℃/30 MPa/30 min;(d)140 ℃/30 MPa/30 min 80
圖4-32含30B之複合材料以10 ℃/min 升溫之DSC 圖譜:(a)120 ℃/20 MPa/30 min;(b)140 ℃/20 MPa/30 min;(c)120 ℃/30 MPa/30 min;(d)140 ℃/30 MPa/30 min 81

表目錄
表2- 1物質三相密度、黏度與擴散係數等物理性質比較 40
表2-2 常見超臨界流體臨界性質 41
表3-1 有機改質黏土物性.………………………...………………...…42
表3-2 摻合體配方 43
表3-3 奈米複合材料配方 43
表4-1 未發泡和發泡奈米複合材料中 20A 之層間距.……….……..44
表4-2 未發泡和發泡奈米複合材料中 30B 之層間距 44


參考文獻
[1] R. Gregorio Jr., M. Cestari, F. E. Bernardino, “Dielectric behaviour of thin films of β -PVDF/PZT and β -PVDF/BaTiO3 composites”, J. Mater. Sci., 31, 2925, 1996
[2] 黃鐳迪、陳夏宗,“含氟聚合物材料之發展及其應用”,化工技術,17,52,2009
[3] M. Kobayashi, K. Tashiro, H. Tadokoro, “Molecular vibrations of Poly(viny1idene fluoride)”, Macromolecules, 8, 158, 1975
[4] R. Gregorio, M. Cestari, “Effect of crystallization temperature on the crystalline phase content and morphology of Poly(vinylidene fluoride)”, J. Polym. Sci., Polym. Phys. Ed., 32, 859, 1994
[5] K. Tashiro, M. Kobayashi, H. Tadokoro, “Vibrational spectra and disorder-order transition of Poly(viny1idene fluoride) form Ⅲ”, Macromolecules, 14, 1757, 1981
[6] J. Mijovic, H. L. Luo, C. D. Han,” Property-morphology relationships of PMMA/PVDF blends”, Polym. Eng. Sci., 22, 234, 2004
[7] H. Yoshida, “Structure bormation of PVDF/PMMA blends studied simultaneous DSC/FT-IR measurement”, J. Therm. Anal., 49, 101, 1997
[8] J. Buckley, P. Cebe, D. Cherdack, J. Crawford, J. Crawford ,B. Ince, M. Jenkins , J. Pan, M. Reveley ,N. Washington, N. Wolchover, “Nanocomposites of Poly(vinylidene fluoride) with organically modified silicate”, Polymer, 47, 2411, 2006
[9] W. Yu, Z. Zhao, W. Zheng, Y. Song, B. Li, B. Long, Q. Jiang, “Structural characteristics of Poly(vinylidene fluoride)/clay nanocomposites”, Mater. Lett., 62, 747, 2008
[10] K. P. Pramoda, N. T. T. Linh, P. S. Tang, W. C. Tjiu, S. H. Goh, C. B. He, “Thermo-mechanical properties of Poly(vinylidene fluoride) modified graphite/Poly(methyl methacrylate) nano composites”, Compos. Sci. Technol., 70, 578, 2009
[11] 梁明在,戴宏哲,吳昭燕,“超臨界流體在塑膠發泡的應用”,化工技術,10,180,1998
[12] P. York, B. Y Shekunov, U. B. Kompella, Y. Boris, Supercritical fluid technology for drug product development, Lightning Source Inc, New York , 2004
[13] Y. P. Sun, Supercritical fluid technology in materials science and engineering : synthesis, properties, and applications, Marcel Dekker Inc., New York, 2002
[14] A. I. Cooper, “ Polymer synthesis and processing using supercritical carbon dioxide”, J. Mater. Chem., 10, 207, 2000
[15] 李律葦,以超臨界二氧化碳發泡法製備PCL多孔性塊材,長庚大學化工與材料工程研究所,碩士論文,2009
[16] Y. Arai, T. Sako, Y. Takebayashi, Supercritical fluid: molecular interactions, physical properties, and new applications, Springer Verlag, New York, 2002
[17] V. Kumar, N. P. Suh, “A process for making microcellular thermoplastic parts”, Polym. Eng. Sci., 30, 1323, 1990
[18] T. A. Walker, D. J. Frankowski, R. J. Spontak, “Thermodynamics and kinetic processes of polymer blends and block copolymers in the presence of pressurized carbon dioxide”, Adv. Mater., 20, 879, 2008
[19] S. P. Nalawade, F. Picchioni, L.P.B.M. Janssen, “Supercritical carbon dioxide as a green solvent for processing polymer melts: processing aspects and applications”, Prog. Polym. Sci., 31, 19, 2006
[20] Y. T. Shieh, T. T. Haiao, “Morphological changes of PVDF/PMMA blends via CO2 treatment”, J. of Supercritical Fluids, 48, 64, 2009
[21] B. Zhu, W. Zha, J. Yang, C. Zhang, L. J. Lee, “Layered-silicate based polystyrene nanocomposite microcellular foam using supercritical carbon dioxide as blowing agent”, Polymer, 51, 2177, 2010
[22] D. Klempner, K. C. Frisch, Handbook of Polymeric Foams and Foam Technology, Hanser, New York, 1991
[23] 吳舜英,徐敬一 合編,塑膠發泡成型技術,台灣復文興業股份有限公司,1997
[24] Y. T. Shieh, T. T.Hsiao, S.K.Chang, “CO2 pressure effects on melting, crystallization, and morphology of Poly( vinylidene flouride )”, Polymer, 47, 5929, 2006
[25] S. Siripurapu, Y. J. Gay, J. R. Royer, J. M. DeSimone, R. J. Spontak, S. A. Khan, “Generation of microcellular foams of PVDF and its blends using supercritical carbon dioxide in a continuous process”, Polymer, 43, 5511, 2002
[26] 張學明,杜子邦,黃功勛,”超臨界流體技術於生醫材料中之應用”,化工技術,15,154,2007
[27] C. Zeng, X. Han, L. J. Lee, K. W. Kolling, D. L. Tomasko, “Polymer-clay nanocomposite foams prepared using carbon dioxide, Adv. Mater., 15, 1743, 2003
[28] S. Doroudiani, C. B. Park, M. T. Kortschot, “Eflect of the crystallinity and morphology on the microcellular foam structure of semicrystalline polymers”, Polym. Eng. Sci., 36, 2645, 1996
[29] A. S. Zerda, T. C. Caskey, A. J. Lesser, “Highly concentrated, intercalated silicate nanocomposites: synthesis and characterization”, Macromolecules, 36, 1603, 2003
[30] C. Zeng, L. J. Lee, “Poly(methyl methacrylate) and Polystyrene/clay nanocomposites prepared by in-situ polymerization”, Macromolecules, 34, 4098, 2001
[31] S. Ramasundaram, S. Yoon, K. J. Kim, C. Park, Preferential formation of electroactive crystalline phases in Poly(vinylidene fluoride)/organically modified silicate nanocomposites, J. Polym. Sci., Polym. Phys. Ed., 46, 2173, 2008
[32] K. J. Hwang, J.W. Park, I. Kim, C. S. Ha, “Effect of a compatibilizer on the microstructure and properties of partially biodegradable LDPE/Aliphatic Polyester/organoclay nanocomposites”, Macromol. Res., 14, 179, 2006
[33] Y. T. Lim, O. Park, “Microstructure and rheological behavior of block copolymer/clay nanocomposites “, Korean J. Chem. Eng., 18, 21, 2001
[34] X. L. Jiang, T. L., Z.-M Xu, L. Zhao, G. H. Hu,W. K. Yuan, “Effects of crystal structure on the foaming of isotactic Polypropylene using supercritical carbon dioxide as a foaming agent”, J. of Supercritical Fluids, 48, 167, 2009
[35] D. L. Tomasko, X. Han, D. Liu, W. Gao, “Supercritical fluid applications in polymer nanocomposites”, Curr. Opin. Solid State Mater. Sci., 7, 407, 2003
[36] S. K. Goel, E. J. Beckman, “Generation of microcellular polymeric foams using supercritical carbon dioxide I- effect of pressure and temperature on nucleation”, Polym. Eng. Sci., 34, 1137, 1994

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top