跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.213) 您好!臺灣時間:2025/11/09 05:41
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:郭育昌
研究生(外文):Yu-Chan Kuo
論文名稱:植體系統及植入方位在不同骨密度條件下對於上顎骨嵴及植體週邊骨質之生物力學分析
論文名稱(外文):Evaluation of the Biomechanical Interactions in Frialit-2, Bicon and ITI Implant Systems with Different Placements and Its Surrounding Bone at Facial Maxillary Region under Various Bone Quality
指導教授:林峻立林峻立引用關係
指導教授(外文):Chun-Li Lin
學位類別:碩士
校院名稱:長庚大學
系所名稱:醫療機電工程研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2005
畢業學年度:93
語文別:中文
論文頁數:119
中文關鍵詞:人工植牙有角度支台骨質密度植入方位逆向工程雷射掃瞄生物力學分析有限元素法
外文關鍵詞:Dental ImplantBone DensityITI Dental ImplantFrialit-2 Dental ImplantBicon Dental ImplantBiomechanicalFinite Element Analysis
相關次數:
  • 被引用被引用:1
  • 點閱點閱:430
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:2
骨整合性(osseointegration)的植體技術已成為目前牙科植體學的主流,然而都必須立足於成功的骨整合條件上。就生物力學觀點而言,影響上顎牙科植體系統其成功與否的因素主要分為植體週邊骨質外型、不同骨密度之狀態、不同植體系統選用及植體系統植入方位四種。因此本研究主要目的為探討上述四種因素對於植體系統的穏定度及周邊骨質之生物力學影響程度,以提供醫師臨床種植植體之參考依據。研究中結合醫學影像與逆向工程、電腦輔助工程設計及電腦輔助工程分析等技術,針對上述因素,建構出三款植體系統搭配三種植入方位,共九組之有限元素模型,再藉由不同材料特性變換的方式,以模擬四種不同骨質密度,而在邊界條件部份,則分別在牙冠2/3高度處,給定軸向力(100N)及側向力(100N),藉以瞭解植體系統內部及周邊骨質之力學反應。分析數值將經過變異數分析(ANOVA),以得知各參數的影響比例,並透過影響因子曲線(main factor effect ),判讀最佳化之參數。結果發現,在上、下顎骨嵴外型部份,發現其骨質應變與植體元件的應力值差異並不如預期顯著。側向咬合模擬時,無論對骨嵴或是植體系統各元件之影響均遠大於軸向咬合模擬,因此建議臨床醫師在進行植體植入時,可透過咬合調整方式,以減少植體可能承受之側方咬合力。在植入方位的模擬中,OFW植入方位所獲得之各元件應力應變數值皆在合宜範圍內;OR植入方位在軸向咬合模擬下,會產生較高應緻密骨應變數值,且無論在軸向或側向咬合模擬,皆會使得植體系統承受較高之彎曲力矩;OFB植入方式在任一種咬合模擬下,其力量會經由頰側緻密骨接觸區傳遞至周圍骨質,因而減少整體應力應變值。因此本研究則建議臨床醫師在植入方位考量上能夠以沿著咬合施力長軸的方向植入,以得到較良好之應變分佈。在植體系統選用模擬中,TIS植體系統無論在任一種植入方位下,皆可獲得較低之骨質應變值;TIF植體系統在側向咬合力下,會使得緻密骨應變值升高,但軸向咬合則無此現象;retaining screw植體系統之應力應變數值的分佈為三者中最不理想。因此在植體系統選用方面,建議臨床盡量採用TIS支台/植體結合形式。在骨質密度模擬中,隨著骨質密度的下降,各元件之應力應變值皆隨之升高,特別是在骨密度4會有急遽上升之情況,建議臨床醫師面臨骨密度不佳且又必要進行植體植入時,可透過推擠壓縮的方式以增加植體周圍骨質的密度,而達到良好的力量傳遞機制,並可搭配OFW或OFB方位植入,且在植體系統也可採用TIS植體系統。
The implant of osseointegration has become the mainstream in implant dentistry. However, it requires successful osseointegration conditions. From the perspective of biomechanics, the factors affecting the maxillary implant dentistry include the bone structure surrounding the implant, the bone density, the selection of implant, and the implant position. The objectives of this study are to discuss the effects of the abovementioned four factors on the stability of the implant and the biomechanics of the surrounding bond. The results are provided to as reference to clinical practice of implants. The study combined medical image, reverse engineering, computer-aided engineering design, and computer-aided engineering analysis technologies, and constructed nine sets of finite element models with three types of implants and three implant position based on the abovementioned factors. It utilized the change of varied material characteristics to simulate four types of bone densities. In terms of the boundary conditions, constant axial force (100N) and lateral force (100N) were applied at 2/3 of the crown to find out the mechanical reaction of the inside of the implant and surrounding bone. The data were analyzed with ANOVA to obtain the affecting ratio of each parameter, and main factor effect was applied to determine the optimal parameters. The results showed that the stress difference of the bone strain and implant at the ridge of the supramaxilla and mandible is not significant as expected. The simulation of the lateral occlusion showed greater effect on the bone ridge and implant than the axial occlusion. Therefore, it is suggested to physician that the adjustment of occlusion could be utilized during the implant to reduce the possible lateral occlusive force to be received by the implant. In the simulation of the implant position, the range of stress strain for position of OFW was reasonable. The simulation of axial occlusion at position of OR showed higher compact bone strain. Both axial and lateral occlusion simulations showed higher bending moment to be received by implant. The force in the simulation of all occlusion simulations at position of OFB transmitted through contact areas of compact bone to the surrounding bone, thus, reduced the overall stress strain. Therefore, it is suggested that physicians could implant along the major axis of the occlusive force for improved strain distribution. In the simulation of implant selection, TIS implant could result in lower bone strain at all implant positions. Under lateral occlusive force, TIF implant would result in increase of compact bone strain, but not in axial occlusion. The distribution of the stress strain for retaining screw was the least satisfactory among the three. Therefore, it is suggested to physicians using combination of TIS abutment and implant. In simulation of bone density, the stress strain of all components would increase as the bone density decreases, and increase sharply when the bone density reaches 4. It is suggested to physicians using compressing and condensing method in case of poor bone density and unavoidable implant, in order to improve the bone density surrounding the implant and create satisfactory force transmission mechanism; or implanting at positions of OFW or OFB, and using TIS implant.
目錄
摘要 i
英文摘要 iii
目錄 iv
表目錄 vii
圖目錄 viii
第一章 緒論 1
1.1研究背景 1
1.1.1牙齒功能與傳統缺牙補綴 1
1.1.2人工植體技術及種植準則 2
1.1.3上、下顎骨嵴外型差異 4
1.1.4不同骨密度之狀態 5
1.1.5不同植體系統選用 6
1.1.6植體系統植入方位 8
1.2有限元素法 10
1.3研究動機 11
1.4文獻回顧 12
1.4.1不同顎骨幾何外型 12
1.4.2不同顎骨密度條件 13
1.4.3不同植體系統探討 14
1.4.4植體系統植入方位 15
1.4.5有限元素模擬分析 17
1.4.6文獻總結 18
1.4研究目的 19
第二章 材料與方法 20
2.1研究流程 20
2.2上顎牙科植體有限元素模型之建構 22
2.2.1顎骨外型取得 22
2.2.2小臼齒牙冠外型取得 23
2.2.3植體系統外型取得 24
2.2.4電腦輔助分析 25
2.3上顎牙科植體有限元素模型之參數分析 27
2.3.1參數變更設定 27
2.3.2分析數據擷取 27
2.4變異數分析統計 29
第三章 結果 30
3.1上顎牙科植體有限元素模型建構 30
3.2上、下顎骨嵴外型有限元素模擬分析結果 31
3.3上顎牙科植體有限元素模擬分析結果 32
3.3.1側向咬合力下之植體植入方位模擬 32
3.3.2側向咬合力下之植體系統選用模擬 34
3.3.3軸向咬合力下之植體植入方位模擬 36
3.3.4軸向咬合力下之植體系統選用模擬 36
3.4上顎牙科植體有限元素模擬分析結果之變異數分析統計 38
3.4.1側向咬合力下之變異數分析 38
3.4.2軸向咬合力下之變異數分析 41
第四章 討論 44
4.1上顎牙科植體有限元素模型建構 44
4.1.1上顎骨外型 45
4.1.2植體系統外型 46
4.1.3牙冠外型 47
4.1.4接觸界面設定 48
4.2上顎牙科植體有限元素模擬分析指標 48
4.2.1應力與應變指標 48
4.3上顎牙科植體有限元素模擬分析結果之變異數分析統計 49
4.3.1側向咬合力下之變異數分析 49
4.3.2軸向咬合力下之變異數分析 51
4.4上顎牙科植體有限元素模擬分析假設及限制 54
4.5.1基本假設 54
4.5.2負載條件 54
4.5.3模型驗證 55
第五章 結論 56
參考文獻 57

表目錄
表一、電腦輔助分析組數表 65
表二、本研究建構之有限元素模型節點、元素及接觸性元素數目 67
表三、本研究分析之各元件應力應變值 68
表四、植體植入上顎及下顎骨應力應變表 70
表五、本研究分析之各元件應力應變值轉換數值 71
表六、各參數影響比例與緻密骨最大等效應變值之關聯檢定 73
表七、各參數影響比例與鬆質骨最大等效應變值之關聯檢定 73
表八、各參數影響比例與植體系統最大等效應變值之關聯檢定 73
表九、各參數影響比例與緻密骨最大等效應變值之關聯檢定 74
表十、各參數影響比例與鬆質骨最大等效應變值之關聯檢定 74
表十一、各參數影響比例與植體系統最大等效應變值之關聯檢定 74
表十二、Angle方位下,緻密骨及鬆質骨之最大等效應變值 75

圖目錄
圖1-1、缺牙前後力量作用之影響 76
圖1-2、傳統固定局部義齒之補綴方式 76
圖1-3、人工植牙程序 77
圖1-4、上顎齒槽骨及下顎齒槽骨嵴外型差異 78
圖1-5、上顎齒槽嵴產生生理性的吸收現象 78
圖1-6、簡化之骨嵴模型 79
圖1-7、1985年Lekholm等學者提出顎骨骨質密度分類 79
圖1-8、植體系統種類 80
圖1-9、雙緻密骨(bicortically)接觸的情況 81
圖1-10、順應咬合力方向植入時,所產生之缺損 82
圖1-11、有角度支台及順應骨嵴植入示意圖 82
圖1-12、有限元素分析流程 83
圖1-13、技術整合圖 84
圖2-1、研究流程圖 85
圖2-2、有限元素模型建構流程 86
圖2-3、CT 影像可於軟體中進行各平面之邊修 87
圖2-4、利用醫學專業影像軟體所重組之人類上顎骨 87
圖2-5、利用逆向工程軟體所擷取人類上顎骨幾何外輪廓 88
圖2-6、非接觸式四軸三維雷射掃描 89
圖2-7、三度空間力回饋雕塑系統曲面重建與線段擷取 89
圖2-8、散射狀切割示意圖 90
圖2-9、植體系統內部尺寸擷取 90
圖2-10、本研究建構出植體元件實體模型 91
圖2-11、本研究建構出上顎牙科植體實體模型 92
圖2-12、本研究建構出上顎牙科植體實體模型(爆炸圖) 93
圖2-13、本研究建構出上顎牙科植體網格化模型 94
圖2-14、Bicon植體系統支台與植體間接觸元素設定示意圖 95
圖2-15、本研究建構九組有限元素示意圖 96
圖2-16、本研究設定四組不同骨密度狀況示意圖 97
圖3-1、Bicon植體系統在不同植入方位及骨密度條件下,緻密骨最大等效應變值的趨勢感應器固定於受測者頭部之位置 98
圖3-2、Bocin系統在骨密度4情況下,使用Angle植入方位之緻密骨應變集中區域 98
圖3-3、Bicon植體系統在不同植入方位及骨密度條件下,鬆質骨最大等效應變值的趨勢 99
圖3-4、Bocin系統在骨密度4情況下,使用Bicortical植入方位之鬆質骨應變集中區域 99
圖3-5、Bicon植體系統在不同植入方位及骨密度條件下,植體最大等效應力的趨勢 100
圖3-6、Bocin系統在骨密度4情況下,使用Angle植入方位之植體元件應力集中區域 100
圖3-7、F2植體系統在不同植入方位及骨密度條件下,緻密骨最大等效應變值的趨勢 101
圖3-8、F2系統在骨密度4情況下,使用Normal植入方位之緻密骨應變集中區域 101
圖3-9、F2植體系統在不同植入方位及骨密度條件下,鬆質骨最大等效應變值的趨勢 102
圖3-10、F2系統在骨密度4情況下,使用Bicortical植入方位之鬆質骨應變集中區域 102
圖3-11、F2植體系統在不同植入方位及骨密度條件下,植體最大等效應力的趨勢 103
圖3-12、F2系統在骨密度4情況下,使用Angle植入方位之植體元件應力集中區域 103
圖3-13、ITI植體系統在不同植入方位及骨密度條件下,緻密骨最大等效應變值的趨勢 104
圖3-14、ITI系統在骨密度4情況下,使用Normal植入方位之緻密骨應變集中區域 104
圖3-15、ITI植體系統在不同植入方位及骨密度條件下,鬆質骨最大等效應變值的趨勢 105
圖3-16、ITI系統在骨密度4情況下,使用Bicortical植入方位之鬆質骨應變集中區域 105
圖3-17、ITI植體系統在不同植入方位及骨密度條件下,植體最大等效應力的趨勢 106
圖3-18、ITI系統在骨密度4情況下,使用Angle植入方位之植體元件應力集中區域 106
圖3-19、在Normal植入方位下,不同植體系統及骨密度條件之緻密骨最大等效應變值趨勢 107
圖3-20、在Normal植入方位與骨密度4狀態下,F2之緻密骨應變集中區域。 107
圖3-21、在Normal植入方位下,不同植體系統及骨密度條件之鬆質骨最大等效應變值趨勢 108
圖3-22、在Normal植入方位與骨密度4狀態下,ITI之鬆質骨應變集中區域 108
圖3-23、在Normal植入方位下,不同植體系統及骨密度條件之植體最大等效應變值趨勢 109
圖3-24、在Normal植入方位與骨密度4狀態下,F2之植體應變力中區域 109
圖3-25、在Angle植入方位下,不同植體系統及骨密度條件之緻密骨最大等效應變值趨勢 110
圖3-26、在Angle植入方位與骨密度4狀態下,F2之緻密骨應變集中區域 110
圖3-27、在Angle植入方位下,不同植體系統及骨密度條件之鬆質骨最大等效應變值趨勢 111
圖3-28、在Angle植入方位與骨密度4狀態下,ITI之鬆質骨應變集中區域 111
圖3-29、在Angle植入方位下,不同植體系統及骨密度條件之植體最大等效應變值趨勢 112
圖3-30、在Angle植入方位與骨密度4狀態下,F2之植體應變力中區域 112
圖3-31、在Bicortical植入方位下,不同植體系統及骨密度條件之緻密骨最大等效應變值趨勢 113
圖3-32、在Bicortical植入方位下,不同植體系統及骨密度條件之鬆質骨最大等效應變值趨勢 113
圖3-33、在Bicortical植入方位下,不同植體系統及骨密度條件之植體最大等效應變值趨勢 114
圖3-34、在Bicortical植入方位與骨密度4狀態下,F2之植體應變力中區域 114
圖3-35、Bicon植體系統在不同植入方位及骨密度條件下,密緻骨最大等效應力的趨勢 115
圖3-36、ITI植體系統在不同植入方位及骨密度條件下,密緻骨最大等效應力的趨勢 115
圖3-37、在Normal植入方位下,不同植體系統及骨密度條件之緻密骨最大等效應變值趨勢 116
圖3-38、在Angle植入方位下,不同植體系統及骨密度條件之緻密骨最大等效應變值趨勢 116
圖3-39、側向施力下,植體系統各參數之主要影響因子曲線圖 117
圖3-40、軸向施力下,植體系統各參數之主要影響因子曲線圖 118
參考文獻
[1]Cavicchia F, Bravi F. Free-standing vs tooth-connected implant-supported fixed partial restorations: a comparative restospective clinical study of the prosthetic results. International Journal of Oral & Maxillofacial Implants. 1994; 9: 711.
[2] Branemark P-I, Breine U, Adell R, et al. Intra-osseous anchorage of dentalprostheses. I. Experimental studies. Scandinavian Journal of Plastic & Reconstructive Surgery & Hand Surgery. 1969; 3: 81-100.
[3] Adell R, Lekholm, Rockler B, et al. A 15-year study of osseointegrated implants in the treatment of the edentulous jaw. International Journal of Oral & Maxillofacial Surgery. 1981; 6: 387-416.
[4] Zarb GA. Introduction to osseointegration in clinical dentistry. Journal of Prosthetic Dentistry. 1983; 49: 824
[5] Rangert B, Sullivan DY. Mechanical aspects of a Branemark implant connected to a natural tooth: an in vitro study. International Journal of Oral & Maxillofacial Implants. 1991; 6: 177.
[6] El Charkawi HG, Zekry KA, El Wakad MT. Stress analysis of different osseointegrated implants supporting a distal extension prosthesis. Journal of Prosthetic Dentistry. 1994; 72: 614.
[7] Kayacan R, Ballarini R, Mullen RL. Theoretical study of the effects of tooth and implant mobility difference on occlusal force transmission in tooth/ implant-supported partial prostheses. Journal of Prosthetic Dentistry. 1997; 78: 391.
[8] Charles M.Weiss. Principles & Practice of Implant Dentistry, 2001
[9]Teixeira ER. Sato Y. Akagawa Y. Shindoi N. A comparative evaluation of mandibular finite element models with different lengths and elements for implant biomechanics. Journal of Oral Rehabilitation. 1998; 25(4):299-303.
[10] Kayacan R, Ballarini R, Mullen RL. Theoretical study of the effects of tooth and implant mobility difference on occlusal force transmission in tooth/ implant- supported partial prostheses. Journal of Prosthetic Dentistry. 1997; 78: 391-399.
[11] Lekholm U, Zarb GA. Tissue-integrated prostheses In: Branemark PI, Zarb GA, Albrektsson T. Tissue-interated prostheses. Chicago: Quintesssence; 1985. P.199-209
[12] Jaffin RA. Berman CL. The excessive loss of Branemark fixtures in type IV bone: a 5-year analysis. Journal of Periodontology. 1991; 62(1):2-4.
[13] Rangert B. Biomechanics of the Branemark system. Australian Prosthodontic Journal. 1995; 9:39-48.
[14] Khraisat A. Abu-Hammad O. Al-Kayed AM. Dar-Odeh N. Stability of the implant/abutment joint in a single-tooth external-hexagon implant system: clinical and mechanical review. Implant Dentistry & Related Research. 2004; 6(4):222-9.
[15] Norton MR. Assessment of cold welding properties of the internal conical interface of two commercially available implant systems. Journal of Prosthetic Dentistry. 1999; 81(2):159-66.
[16]Merz BR, Hunenbart S, Belser UC. Mechanics of the implant-abutment connection: an 8-degree taper compared to a butt joint connection. International Journal of Oral & Maxillofacial Implants. 2000; 15(4):519-26.
[17] Sutter F, Weber H.P, Sorensen J, Belser, U. The new restorative concept of the ITI dental implant system: design and engineering. International Journal of Periodontics Restorative Dentistry. 1993; 13: 409–431.
[18] Clelland NL, Gilat A, McGlumphy EA, Brantley WA. A photoelastic and strain gauge analysis of angled abutments for an implant system. International Journal of Oral & Maxillofacial Implants. 1993; 8(5):541-8.
[19]Clelland NL, Lee JK, Bimbenet OC, Brantley WA. A three-dimensional finite element stress analysis of angled abutments for an implant placed in the anterior maxilla. Journal of Prosthodontics. 1995; 4(2):95-100.
[20] Sethi A, Kaus T, Sochor P. The use of angulated abutments in implant dentistry: five-year clinical results of an ongoing prospective study. International Journal of Oral & Maxillofacial Implants. ; 2000 15(6):801-10.
[21] Eger DE, Gunsolley JC, Feldman S. Comparison of angled and standard abutments and their effect on clinical outcomes: a preliminary report. International Journal of Oral & Maxillofacial Implants. 2000; 15(6):819-23.
[22] Mendonca G, Fernandes Neto AJ, Neves FD. A customized guide for transferring angled abutments. Journal of Prosthetic Dentistry. 2002; 87(6):698-9.
[23] McGlumphy EA, Peterson LJ, Larsen PE, Jeffcoat MK. Prospective study of 429 hydroxyapatite-coated cylindric omniloc implants placed in 121 patients. International Journal of Oral & Maxillofacial Implants. 2003; 18(1):82-92.
[24] Bischof M, Nedir R, Szmukler-Moncler S, Bernard JP, Samson J. Implant stability measurement of delayed and immediately loaded implants during healing. Clinical Oral Implants Research. 2004; 15(5):529-39.
[25] Koca OL, Eskitascioglu G, Usumez A. Three-dimensional finite-element analysis of functional stresses in different bone locations produced by implants placed in the maxillary posterior region of the sinus floor. Journal of Prosthetic Dentistry. 2005; 93(1):38-44.
[26] Martinez H, Davarpanah M, Missika P, Celletti R, Lazzara R. Optimal implant stabilization in low density bone. [Review] [87 refs] [Journal Article. Review. Review, Tutorial] Clinical Oral Implants Research. 2001; 12(5):423-32.
[27] Tada S, Stegaroiu R, Kitamura E, Miyakawa O, Kusakari H. Influence of implant design and bone quality on stress/strain distribution in bone around implants: a 3-dimensional finite element analysis. International Journal of Oral & Maxillofacial Implants. 2003; 18(3):357-68.
[28] Sevimay M, Turhan F, Kilicarslan MA, Eskitascioglu G. Three-dimensional finite element analysis of the effect of different bone quality on stress distribution in an implant-supported crown. Journal of Prosthetic Dentistry. 2005; 93(3):227-34.
[29] Holmgren EP, Seckinger RJ, Kilgren LM, Mante F. Evaluating parameters of osseointegrated dental implants using finite element analysis--a two-dimensional comparative study examining the effects of implant diameter, implant shape, and load direction. Journal of Oral Implantology. 1998; 24(2):80-8.
[30] Rangert B, Gunne J, Sullivan DY. Mechanical aspects of a Branemark implant connected to a natural tooth: an in vitro study. International Journal of Oral & Maxillofacial Implants. 1991; 6(2):177-86.
[31] Burguete RL, Johns RB, King T, Patterson EA. Tightening characteristics for screwed joints in osseointegrated dental implants. Journal of Prosthetic Dentistry. 1994; 71(6):592-9.
[32] Khraisat A, Abu-Hammad O, Al-Kayed AM, Dar-Odeh N. Stability of the implant/abutment joint in a single-tooth external-hexagon implant system: clinical and mechanical review. Clinical Implant Dentistry & Related Research. 2004; 6(4):222-9.
[33] Misch, C.E. Principles for screw-retained prosthesis. In: Misch, C.E. (Ed.), Contemporary Implant Dentistry. Mosby, St. Louis, Missouri, 1999 pp. 575–598.
[34]Haas, R., Mensdorff-Pouilly, N., Mailath, G., Watzek, G.. Branemark single tooth implants: a preliminary report of 76 implants. Journal of Prosthetic Dentistry.1995; 73 (3):274–279.
[35]Anonymous. US markets for dental implants 2001: executive summary. Implant dentistry.2001; 10(4): 234–237.
[36] Levine R.A, Clem D.S, Wilson Jr, T.G. Higginbottom, F, Solnit G.. Multicenter retrospective analysis of the ITI implant system used for single-tooth replacements: Preliminary results at 6 or more months of loading. International Journal of Oral Maxillofacial Implants. 1997; 12:237–242.
[37] Levine R.A, Clem D.S, Wilson Jr, T.G, Higginbottom, F, Saunders S.L. A multicenter retrospective analysis of the ITI implant system used for single-tooth replacements: results of loading for 2 or more years. International Journal of Oral Maxillofacial Implants. 1999; 14:516–520.
[38] Behneke A, Behneke N, d’Hoedt B. The longitudinal clinical effectiveness of ITI solid-screw implants in partially edentulous patients: a 5-year follow-up report. International Journal of Oral Maxillofacial Implants. 2000; 15: 633–645.
[39] Morgan K.M., Chapman R.J. Retrospective analysis of an implant system. Compendium of Continuing Education in Dentistry. 1999; 20 (7):609–614.
[40] Sutter F., Weber H.P., Sorensen J., Belser U. The new restorative concept of the ITI dental implant system: design and engineering. International Journal of Periodonties Restorative Dentistry .1993; 13:409–431.
[41] Dincer B, Sinan M., Mechanics of the tapered interference fit in dental implants. Journal of Biomechanics 2003; 36: 1649–1658.
[42] Esposito M, Thomsen P, Molne J, Gretzer C, Ericson LE, Lekholm U. Immunohistochemistry of soft tissues surrounding late failueres of Branemark implants. Clin Oral Implants Res. 1997; 8(5): 352-366.
[43] Esposito M, Hirsch JM, Lekholm U, Thomsen P. Biological factors contributing to failures of osseointegrated oral implants. (II). Etiopathogenesis. European Journal of Oral Sciences. 1998; 106(3): 721-764.
[44] Isidor F. Loss of osseointegration caused by occlusal load of oral implants. A clinical and radiographic study in monkeys. Clinical Oral Implants Research. 1996; 7(2): 143-152.
[45] Isidor F. Histologica] evaluation of peri-implant bone at implants subjected to occlusal overload or plaque accumulation. Clinical Oral Implants Research. 1997; 8(1): 1-9.
[46] Isidor F. Clinical probing and radiographic assessment in relation to the histologic bone level at oral implants in monkeys. Clinical Oral Implants Research. 1997; 8(4): 255-264.
[47] Hoshaw S.J., Brunski J.B. & Cochran, G.V.B. Mechanical loading of Branemark implants affects interfacial bone modeling and remodeling. International Journal of Oral & Maxillofacial Implants. 1994; 9: 345-360.
[48] Engquist B, Bergendal T, Kallus T, Linden U. A relrospective multicenter evaluation of osseointegrated implants supporting overdentlires. International Journal of Oral & Maxillofacial Implants. 1988; 3(2): 129-134.
[49] Nancy L. Clelland, Amos Gilat, Edwin A. McGlumphy, William A. Brantly, A photoelastic and strain gauge analysis of angled abutments for an implant system.The International Journal of oral and maxillofacial implants. 1993,18:541-548.
[50] Senay, C., Nur, H., Irfan, A., Zulfu, A,. Comparison of stress distribution around vertical and angled implant with finite-element analysis. Quintessence International 1996,27:591-598.
[51] Sethi A., Kaus T., Sochor P., Axmann-Krcmar D., Chanavaz M. Evolution of the concept of angulated abutments in implant dentistry: 14-yrars clinical data. Implant Dentistry. 2002,11:41-51.
[52] Smedberg JI. Johansson P. Implants and sinus-inlay graft in a 1-stage procedure in severely atrophied maxillae: prosthodontic aspects in a 3-year follow-up study. International Journal of Oral & Maxillofacial Implants. 2001; 16(5):668-74.
[53] Frost HM. Wolff's law and bone's structural adaptations to mechanical usage: an overview for clinicians. The Angle Orthodontist.1994; 64(3): 175-188.
[54] Lin CL, Wang JC. Nonlinear finite element analysis of a splinted implant with various connectors and occlusal forces. International Journal of Oral & Maxillofacial Implants. 2003; 18: 341-350.
[55] Tada S, Stegaroiu R, Kitamura E, Miyakawa O, Kusakari H. Influence of implant design and bone quality on stress/strain distribution in bone around implants: a 3-dimensional finite element analysis. International Journal of Oral & Maxillofacial Implants. 2003; 18(3):357-68.
[56] Kitamura E, Stegaroiu R, Nomura S, Miyakawa O. Biomechanical aspects of marginal bone resorption around osseointegrated implants: considerations based on a three-dimensional finite element analysis. Clinical Oral Implants Research. 2004; 15(4):401-12.
[57] Dar FH, Meakin JR, Aspden RM. Statistical methods in finite element analysis. Journal of Biomechanics. 2002; 35(9):1155-61.
[58] Lin CL, Wang JC, Kuo YC. Numerical simulation on the biomechanical interactions of tooth/implant-supported system under various occlusal force with figid / non-rigid connections. Journal of Biomechanics. [In express]
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top