跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.14) 您好!臺灣時間:2025/12/27 04:39
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:陳婉瑜
研究生(外文):Wan-Yu Chen
論文名稱:人體周邊血促進血管生成之類內皮前驅細胞的分離培養及鑑定
論文名稱(外文):Isolation and characterization of human peripheral blood derived endothelial progenitor-like cells for neo-vasculogenesis
指導教授:施子弼
指導教授(外文):Daniel Tzu-bi Shih
學位類別:碩士
校院名稱:臺北醫學大學
系所名稱:細胞及分子生物研究所
學門:醫藥衛生學門
學類:醫學學類
論文種類:學術論文
論文出版年:2005
畢業學年度:93
語文別:中文
論文頁數:59
中文關鍵詞:成人血液細胞類內皮前驅細胞轉分化去分化血管生成
外文關鍵詞:adult blood cellsendothelial progenitor like cellstrans- or de- differentiationneo-vasculogenesis
相關次數:
  • 被引用被引用:1
  • 點閱點閱:653
  • 評分評分:
  • 下載下載:78
  • 收藏至我的研究室書目清單書目收藏:0
內皮前驅細胞能夠修復受傷的血管,促進血管的再生,本實驗分離健康成人之週邊血單核細胞,利用特殊的培養方法,促使貼附性單核細胞分化為類內皮前驅細胞,並鑑定其特徵及功能。自體外培養七天後得到的類內皮前驅細胞,具有攝取 DiI-Ac LDL 以及結合 ULEX-1 的功能,此特徵與前人所報導的內皮前驅細胞相像,並且藉著反轉錄聚合酶連鎖反應以及免疫螢光染色,此細胞也表現內皮細胞之特有基因:VE-cadherin、vWF、eNOS,以及內皮細胞之特有蛋白:vWF。在細胞的功能性分析方面,得知類內皮前驅細胞在體外的細胞間質萃取物 (Matrigel) 上可以促使類似血管的生成;藉由流式細胞儀偵測培養天數不同的細胞表面分子表現:血源性細胞標的:CD105會隨著培養天數大幅降低,另外,早期內皮細胞的內皮血管生長因子接受器1 & 2 (Flt-1 & KDR) 隨著天數表現則逐漸升高,顯示血源性單核細胞轉分化 (trans-differentiation) 的趨勢。此外,在形成類內皮前驅細胞的過程,可以偵測到代表早期細胞的標記基因:Oct-4、Rex-1、Sox-2 的表現逐漸增高,並且細胞端粒酶活性也增強,顯示成人細胞在經由培養之後會表現早期細胞的特性。進一步了解內皮前驅細胞分化過程中分泌了哪些激素,收集其第一天至第四天以及第四天至第七天,類內皮前驅細胞形成過程的培養液,以人類細胞激素蛋白表達微陣列之比對分析,可以得知養成類內皮前驅細胞第四天至第七天,細胞會大量表現:Hemangiogenic factors/Pro-angiogenic factors
(b-FGF、G-CSF and GM-CSF),Chemokines/Pro-inflammatory factors/Pro-angiogenic factors (GRO/CXCL-2、IL-8/CXCL-8、 I-309/CCL-1、I-TAC/CXCL-11、MCP-1/CCL-2、RANTES/CCL-5) 以及 Cytokine/Pro-inflammatory factors (IL-13) 這些細胞激素,可能經由paracrine或autocrine的機制調控其本身的分化,促使血管的生成及持久性和穩定性,或者扮演其他生理性功能。
  經由以上的實驗結果證明在體外 (in vitro) 的情況下可以使成人週邊血中的血源系細胞轉分化或去分化成為類內皮前驅細胞,並且可能經由細胞激素的刺激促進血管的再生,進一步將利用動物實驗證實。
This study describes the generation and characterization of human adult peripheral blood mononuclear-derived endothelial progenitor-like cells (EPLCs) as a resource may potentially useful for neo-vasculogenesis.
Peripheral blood mononuclear cell derived EPLCs are characterized by their phonotypical expression of CD34–, CD105+, CD14++, CD31++, CD45+++, and VEGF receptors positive (Flt-1++ and KDR++). These cells up-taking AC-LDL, binding ULEX-1 functions and exhibit tube formation in the Matrigel culture system in resemble to the CD34+, KDR++, AC133+ endothelial progenitor cells (EPCs). EPLCs express endothelial-specific genes such as VE-cadherin, vWF, and eNOS as functioning endothelial cells (ECs). During the course of EPLCs formation culture, increased early genes (Oct-4, Rex-1, and Sox-2) expression and enhanced telomerase activity were detected as their positive cell surface marker CD105 was switched off and at mean time turned on the angiogenic receptors Flt-1, and KDR. In contrast to the previously finding of angiogenic factors G-CSF, VEGF, HGF secreted by the EPCs18, the current study reveals that EPLCs secrete additional hemangiogenic factors/pro-angiogenic factors (b-FGF、GM-CSF), chemokines/pro-inflammatory factors/pro-angiogenic factors (GRO/CXCL-2、IL-8/CXCL-8、 I-309/CCL-1、I-TAC/CXCL-11、MCP-1/CCL-2、RANTES/CCL-5), and cytokine/pro-inflammatory factors (IL-13).
Taken together, the present study demonstrates that EPLCs can be derived from transforming human adult hematopoietic mononuclear cells into functioning endothelial progenitor like cells phenotype via the process of trans-dedifferentiation in vitro that may benefit for the vascular wound healing and regeneration in vivo. Animal model studies of the EPLCs are undergoing.
緒論
 一、細胞治療......................................................01.
 二、胚胎時期血管發育...............................................02.
 三、後生性血管再生.................................................03.
 四、內皮前驅細胞之分離.............................................03.
 五、內皮前驅細胞應用於血管再生治療...................................05.
 六、其他應用於血管再生之幹細胞......................................06.
 七、實驗目的......................................................06.

研究材料與方法
 一、人類週邊血單核細胞的分離及內皮前驅細胞培養........................08.
 二、螢光染色偵測內皮前驅細胞特徵表現.................................08.
 三、免疫螢光染色偵測細胞表面分子表現.................................09.
 四、流式細胞儀鑑定細胞表面分子表現...................................09.
 五、細胞的RNA抽取.................................................10.
 六、反轉錄聚合酶連鎖反應 (reverse transcriptase-polymerase chain reaction, RT-PCR).................................................11.
 七、染色體終端重覆增幅步驟 (telomeric repeat amplification
protocol, TRAP)...................................................11.
 八、體外似管狀構造生成 (tube formation)............................12.
 九、人類細胞激素蛋白表達微陣列 (human cytokine antibody array)......13.

實驗結果與分析
 一、觀察貼附性單核細胞培養後的細胞型態變化............................14.
 二、貼附性單核細胞培養後具有內皮前驅細胞攝取DiI-Ac LDL及結合ULEX-1特徵表現.................................................................14.
 三、貼附性單核細胞培養後表現內皮細胞特殊基因PECAM-1、eNOS、VE-cadherin、vWF及vWF蛋白.......................................................14.
 四、類內皮前驅細胞 (EPLCs) 形成過程中表面分子的變化...................15.
 五、類內皮前驅細胞表現早期細胞標記基因 (Oct-4、Rex-1、Sox2).............................................................16.
 六、類內皮前驅細胞形成過程中細胞端粒酶的活性提高.......................17.
 七、類內皮前驅細胞在體外形成似微管狀構造.............................17.
 八、比較分化為類內皮前驅細胞前後表現的激素............................18.
 九、類內皮前驅細胞表現具有特異性的細胞激素基因 (IL-13、I-309)..........19.

討論...............................................................21.

結論...............................................................28.

表1. 反轉錄聚合酶連鎖反應所使用之引子序列、黏和溫度以及PCR反應次數........29.
表2. 比較內皮前驅細胞之表面分子表現...................................31.
表3. 對照圖九的cytokines的全名、偵測敏感度、差異的比值..................32

圖一、成人週邊血貼附性單核細胞 (adherent PBMNCs) 分化為內皮前驅細胞的型態變化.................................................................33.
圖二、週邊血貼附性單核細胞培養7天後表現內皮前驅細胞的特徵................34.
圖三、Adherent PBMNCs培養後表現內皮細胞之特有基因.....................35.
圖四、Adherent PBMNCs培養後表現內皮細胞之vWF特徵蛋白...................36.
圖五、Adherent PBMNCs分化為類內皮前驅細胞過程中表面分子鑑定.............37.
圖六、內皮前驅細胞表現代表早期細胞的基因...............................39.
圖七、內皮前驅細胞表現端粒酶 (telomerase) 活性........................40.
圖八、內皮前驅細胞在體外生成似管狀構造能力分析..........................41.
圖九、內皮前驅細胞分泌激素分析........................................42.
圖十、內皮前驅細胞表現具有差別的分泌激素基因............................43
1.Bordignon C, Carlo-Stella C, Colombo MP, et al. Cell therapy: achievements and perspectives. Haematologica. 1999;84:1110-1149.
2.Asahara T, Kawamoto A. Endothelial progenitor cells for postnatal vasculogenesis. Am J Physiol Cell Physiol. 2004;287:C572-579.
3.Pardanaud L, Yassine F, Dieterlen-Lievre F. Relationship between vasculogenesis, angiogenesis and haemopoiesis during avian ontogeny. Development. 1989;105:473-485.
4.Larrivee B, Karsan A. Signaling pathways induced by vascular endothelial growth factor (review). Int J Mol Med. 2000;5:447-456.
5.Gurina O, Kupriianov VV, Mironov AA, Mironov VA. [Mechanisms of neovasculogenesis and its regulation in the adult organism]. Arkh Anat Gistol Embriol. 1985;88:9-24.
6.Risau W. Mechanisms of angiogenesis. Nature. 1997;386:671-674.
7.Carmeliet P. Angiogenesis in health and disease. Nat Med. 2003;9:653-660.
8.Hristov M, Erl W, Weber PC. Endothelial progenitor cells: mobilization, differentiation, and homing. Arterioscler Thromb Vasc Biol. 2003;23:1185-1189.
9.Bailey AS, Fleming WH. Converging roads: evidence for an adult hemangioblast. Exp Hematol. 2003;31:987-993.
10.Asahara T, Masuda H, Takahashi T, et al. Bone marrow origin of endothelial progenitor cells responsible for postnatal vasculogenesis in physiological and pathological neovascularization. Circ Res. 1999;85:221-228.
11.Takahashi T, Kalka C, Masuda H, et al. Ischemia- and cytokine-induced mobilization of bone marrow-derived endothelial progenitor cells for neovascularization. Nat Med. 1999;5:434-438.
12.Asahara T, Murohara T, Sullivan A, et al. Isolation of putative progenitor endothelial cells for angiogenesis. Science. 1997;275:964-967.
13.Nieda M, Nicol A, Denning-Kendall P, Sweetenham J, Bradley B, Hows J. Endothelial cell precursors are normal components of human umbilical cord blood. Br J Haematol. 1997;98:775-777.
14.Peichev M, Naiyer AJ, Pereira D, et al. Expression of VEGFR-2 and AC133 by circulating human CD34(+) cells identifies a population of functional endothelial precursors. Blood. 2000;95:952-958.
15.Gehling UM, Ergun S, Schumacher U, et al. In vitro differentiation of endothelial cells from AC133-positive progenitor cells. Blood. 2000;95:3106-3112.
16.Quirici N, Soligo D, Caneva L, Servida F, Bossolasco P, Deliliers GL. Differentiation and expansion of endothelial cells from human bone marrow CD133(+) cells. Br J Haematol. 2001;115:186-194.
17.Kalka C, Masuda H, Takahashi T, et al. Transplantation of ex vivo expanded endothelial progenitor cells for therapeutic neovascularization. Proc Natl Acad Sci U S A. 2000;97:3422-3427.
18.Rehman J, Li J, Orschell CM, March KL. Peripheral blood "endothelial progenitor cells" are derived from monocyte/macrophages and secrete angiogenic growth factors. Circulation. 2003;107:1164-1169.
19.Urbich C, Heeschen C, Aicher A, Dernbach E, Zeiher AM, Dimmeler S. Relevance of monocytic features for neovascularization capacity of circulating endothelial progenitor cells. Circulation. 2003;108:2511-2516.
20.Harraz M, Jiao C, Hanlon HD, Hartley RS, Schatteman GC. CD34- blood-derived human endothelial cell progenitors. Stem Cells. 2001;19:304-312.
21.Schmeisser A, Garlichs CD, Zhang H, et al. Monocytes coexpress endothelial and macrophagocytic lineage markers and form cord-like structures in Matrigel under angiogenic conditions. Cardiovasc Res. 2001;49:671-680.
22.Zhao Y, Glesne D, Huberman E. A human peripheral blood monocyte-derived subset acts as pluripotent stem cells. Proc Natl Acad Sci U S A. 2003;100:2426-2431.
23.Madeddu P, Emanueli C, Pelosi E, et al. Transplantation of low dose CD34+KDR+ cells promotes vascular and muscular regeneration in ischemic limbs. Faseb J. 2004;18:1737-1739.
24.Kawamoto A, Gwon HC, Iwaguro H, et al. Therapeutic potential of ex vivo expanded endothelial progenitor cells for myocardial ischemia. Circulation. 2001;103:634-637.
25.Badorff C, Brandes RP, Popp R, et al. Transdifferentiation of blood-derived human adult endothelial progenitor cells into functionally active cardiomyocytes. Circulation. 2003;107:1024-1032.
26.Murohara T, Ikeda H, Duan J, et al. Transplanted cord blood-derived endothelial precursor cells augment postnatal neovascularization. J Clin Invest. 2000;105:1527-1536.
27.Naruse K, Hamada Y, Nakashima E, et al. Therapeutic neovascularization using cord blood-derived endothelial progenitor cells for diabetic neuropathy. Diabetes. 2005;54:1823-1828.
28.Oswald J, Boxberger S, Jorgensen B, et al. Mesenchymal stem cells can be differentiated into endothelial cells in vitro. Stem Cells. 2004;22:377-384.
29.Al-Khaldi A, Eliopoulos N, Martineau D, Lejeune L, Lachapelle K, Galipeau J. Postnatal bone marrow stromal cells elicit a potent VEGF-dependent neoangiogenic response in vivo. Gene Ther. 2003;10:621-629.
30.Davani S, Marandin A, Mersin N, et al. Mesenchymal progenitor cells differentiate into an endothelial phenotype, enhance vascular density, and improve heart function in a rat cellular cardiomyoplasty model. Circulation. 2003;108 Suppl 1:II253-258.
31.Koike N, Fukumura D, Gralla O, Au P, Schechner JS, Jain RK. Tissue engineering: creation of long-lasting blood vessels. Nature. 2004;428:138-139.
32.Lin F, Cordes K, Li L, et al. Hematopoietic stem cells contribute to the regeneration of renal tubules after renal ischemia-reperfusion injury in mice. J Am Soc Nephrol. 2003;14:1188-1199.
33.Khan SS, Solomon MA, McCoy JP, Jr. Detection of circulating endothelial cells and endothelial progenitor cells by flow cytometry. Cytometry B Clin Cytom. 2005;64:1-8.
34.Shalaby F, Rossant J, Yamaguchi TP, et al. Failure of blood-island formation and vasculogenesis in Flk-1-deficient mice. Nature. 1995;376:62-66.
35.Millauer B, Wizigmann-Voos S, Schnurch H, et al. High affinity VEGF binding and developmental expression suggest Flk-1 as a major regulator of vasculogenesis and angiogenesis. Cell. 1993;72:835-846.
36.Yamashita J, Itoh H, Hirashima M, et al. Flk1-positive cells derived from embryonic stem cells serve as vascular progenitors. Nature. 2000;408:92-96.
37.Baal N, Reisinger K, Jahr H, et al. Expression of transcription factor Oct-4 and other embryonic genes in CD133 positive cells from human umbilical cord blood. Thromb Haemost. 2004;92:767-775.
38.Thomson JA, Itskovitz-Eldor J, Shapiro SS, et al. Embryonic stem cell lines derived from human blastocysts. Science. 1998;282:1145-1147.
39.Baddoo M, Hill K, Wilkinson R, et al. Characterization of mesenchymal stem cells isolated from murine bone marrow by negative selection. J Cell Biochem. 2003;89:1235-1249.
40.Hristov M, Weber C. Endothelial progenitor cells: characterization, pathophysiology, and possible clinical relevance. J Cell Mol Med. 2004;8:498-508.
41.Lin Y, Weisdorf DJ, Solovey A, Hebbel RP. Origins of circulating endothelial cells and endothelial outgrowth from blood. J Clin Invest. 2000;105:71-77.
42.Gulati R, Jevremovic D, Peterson TE, et al. Diverse origin and function of cells with endothelial phenotype obtained from adult human blood. Circ Res. 2003;93:1023-1025.
43.Karkkainen MJ, Petrova TV. Vascular endothelial growth factor receptors in the regulation of angiogenesis and lymphangiogenesis. Oncogene. 2000;19:5598-5605.
44.Murasawa S, Llevadot J, Silver M, Isner JM, Losordo DW, Asahara T. Constitutive human telomerase reverse transcriptase expression enhances regenerative properties of endothelial progenitor cells. Circulation. 2002;106:1133-1139.
45.Ingram DA, Mead LE, Tanaka H, et al. Identification of a novel hierarchy of endothelial progenitor cells using human peripheral and umbilical cord blood. Blood. 2004;104:2752-2760.
46.Hur J, Yoon CH, Kim HS, et al. Characterization of two types of endothelial progenitor cells and their different contributions to neovasculogenesis. Arterioscler Thromb Vasc Biol. 2004;24:288-293.
47.Goebeler M, Schnarr B, Toksoy A, et al. Interleukin-13 selectively induces monocyte chemoattractant protein-1 synthesis and secretion by human endothelial cells. Involvement of IL-4R alpha and Stat6 phosphorylation. Immunology. 1997;91:450-457.
48.Fukushi J, Ono M, Morikawa W, Iwamoto Y, Kuwano M. The activity of soluble VCAM-1 in angiogenesis stimulated by IL-4 and IL-13. J Immunol. 2000;165:2818-2823.
49.Fujiyama S, Amano K, Uehira K, et al. Bone marrow monocyte lineage cells adhere on injured endothelium in a monocyte chemoattractant protein-1-dependent manner and accelerate reendothelialization as endothelial progenitor cells. Circ Res. 2003;93:980-989.
50.Sun XT, Zhang MY, Shu C, et al. Differential gene expression during capillary morphogenesis in a microcarrier-based three-dimensional in vitro model of angiogenesis with focus on chemokines and chemokine receptors. World J Gastroenterol. 2005;11:2283-2290.
51.Haque NS, Zhang X, French DL, et al. CC chemokine I-309 is the principal monocyte chemoattractant induced by apolipoprotein(a) in human vascular endothelial cells. Circulation. 2000;102:786-792.
52.Bernardini G, Spinetti G, Ribatti D, et al. I-309 binds to and activates endothelial cell functions and acts as an angiogenic molecule in vivo. Blood. 2000;96:4039-4045.
53.Bussolino F, Ziche M, Wang JM, et al. In vitro and in vivo activation of endothelial cells by colony-stimulating factors. J Clin Invest. 1991;87:986-995.
54.Ogata S, Naito T, Yorioka N, Kiribayashi K, Kuratsune M, Kohno N. Effect of lactate and bicarbonate on human peritoneal mesothelial cells, fibroblasts and vascular endothelial cells, and the role of basic fibroblast growth factor. Nephrol Dial Transplant. 2004;19:2831-2837.
55.Pawlak J, Klim B, Szkudlarek M, Dzieciol J. [The formation of new blood vessels in coronary artery disease: where we are now]. Postepy Hig Med Dosw (Online). 2004;58:358-363.
56.Shintani S, Ishikawa T, Nonaka T, et al. Growth-regulated oncogene-1 expression is associated with angiogenesis and lymph node metastasis in human oral cancer. Oncology. 2004;66:316-322.
57.Li J, Sidell N. Growth-related oncogene produced in human breast cancer cells and regulated by Syk protein-tyrosine kinase. Int J Cancer. 2005.
58.Wang D, Richmond A. Nuclear factor-kappa B activation by the CXC chemokine melanoma growth-stimulatory activity/growth-regulated protein involves the MEKK1/p38 mitogen-activated protein kinase pathway. J Biol Chem. 2001;276:3650-3659.
59.Li A, Dubey S, Varney ML, Dave BJ, Singh RK. IL-8 directly enhanced endothelial cell survival, proliferation, and matrix metalloproteinases production and regulated angiogenesis. J Immunol. 2003;170:3369-3376.
60.Strieter RM, Polverini PJ, Kunkel SL, et al. The functional role of the ELR motif in CXC chemokine-mediated angiogenesis. J Biol Chem. 1995;270:27348-27357.
61.Romagnani P, Annunziato F, Lasagni L, et al. Cell cycle-dependent expression of CXC chemokine receptor 3 by endothelial cells mediates angiostatic activity. J Clin Invest. 2001;107:53-63.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top