跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.23) 您好!臺灣時間:2025/10/27 07:54
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:王蓁儀
研究生(外文):Chen-Yi Wang
論文名稱:酵母菌蛋白Gbp2與其作用蛋白在端粒機制上的功能探討
論文名稱(外文):Characterization of Gbp2 and its interacting proteins on telomere
指導教授:陳美瑜陳美瑜引用關係林敬哲林敬哲引用關係
指導教授(外文):Mei-Yu ChenJing-Jer Lin
學位類別:博士
校院名稱:國立陽明大學
系所名稱:生化暨分子生物研究所
學門:生命科學學門
學類:生物化學學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:中文
論文頁數:108
中文關鍵詞:酵母菌端粒端粒位置效應端粒相關蛋白RNA結合蛋白緘默效應
外文關鍵詞:S. cerevisiaetelomeretelomere position effecttranscriptional silencingGbp2Hrp1RNA-binding protein
相關次數:
  • 被引用被引用:0
  • 點閱點閱:227
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
端粒是真核染色體末端的特殊結構,協助DNA的完整複製、保護染色體不被nuclease分解,以及不被細胞的DNA確認點系統視為DNA損害。酵母菌溫度敏感變異株cdc13-1在30度C時,具有不正常的單股端粒累積,且細胞週期會被停止在G2/M期,而Gbp2,一個在in vitro狀態下可與單股端粒結合的蛋白,在過量表現時可以彌補cdc13-1在30度C時的生長缺陷,並恢復cdc13-1細胞的端粒至正常株相仿的長度。為了尋找Gbp2影響端粒的機制,我們利用酵母菌雙雜交系統篩選到三個能與Gbp2作用的蛋白,分別是Hrp1、Nfi1和Rlr1,而Hrp1與Rlr1在in vitro狀態下可與Gbp2直接作用。分析這些蛋白對端粒機制的相關表型影響,發現Gbp2與Hrp1的過量表現可以影響端粒位置效應,且Gbp2的單股端粒結合能力對於端粒位置效應的影響是需要的;而RLR1刪除株則呈現端粒變長的情形。進ㄧ步分析GBP2與HRP1之間的相關性,發現gbp2刪除株與hrp1-8、hrp1-7在25度C時具有近合成致死的關係,而這樣的生長缺陷並非來自於RNA的合成以及輸出上的缺失。分析gbp2刪除株與hrp1的單一變異株以及雙重變異株後,發現gbp2刪除株結合了hrp1的變異後,對於端粒、HM loci以及rDNA三處的緘默效應的影響力不同。而從已知的Sir2、Sir3以及Sir4在染色體上的分布及對緘默效應的調控,顯示細胞同時具有gbp2刪除株與hrp1的變異時,可能會影響Sir蛋白的分布,而改變了緘默效應之間的調節。而由Rap1與Sir蛋白群間的相關性、GBP2刪除株會改變Rap1蛋白在細胞核內的分布情形,以及Gbp2和Hrp1過量表現會專一性影響端粒位置效應,表示Gbp2和Hrp1可能是透過Rap1與Sir蛋白群而影響端粒機制。
The telomeres of Saccharomyces cerevisiae are composed of ~250-300 bp double-stranded (TG1-3)n/(C1-3A)n and a single-stranded TG1-3 tail. They maintain chromosome integrity and stability. Gbp2p is identified as a single-strand TG1-3 DNA binding protein in vitro. It affects telomere localization since the localization of Rap1p in nuclei was altered in cells deleted of GBP2. Gbp2p overexpression restores the growth arrest and telomere length phenotype in cdc13-1, a temperature-sensitive mutant of an essential telomere-binding protein, Cdc13p. In gbp2-deleted cells, however, the telomere length and telomere position effect are not affected. To elucidate the role of Gbp2p in telomere function, a yeast two-hybrid system was used to identify its interacting proteins. Hrp1p was identified that interacted with Gbp2p and bound directly in vitro. Hrp1p is a nuclear polyadenylated RNA-binding protein involving in the RNA processing. Mutations on both GBP2 and HRP1 caused growth defect, further supports the interactions between these two proteins. However, mutations on either GBP2 and/or HRP1 did not affect telomere length, suggesting that these two genes are not involved in telomere length regulation. The silencing loci of yeast, including telomere silencing locus, were affected differently in gbp2 hrp1 mutants. These effects were not caused by RNA processing since the localization of mRNA or the level of several mRNAs were not affected in gbp2 and/or hrp1 mutants. Together, our results define a novel role of Gbp2 and Hrp1p in modulating silencing loci of yeast cells.
目錄 頁次
目錄……………………………………………………………I
圖次目錄………………………………………………………II
附表目次………………………………………………………IV
縮寫表…………………………………………………………V
中文摘要………………………………………………………1
英文摘要………………………………………………………2
緒論……………………………………………………………3
材料方法………………………………………………………13
實驗結果………………………………………………………35
討論……………………………………………………………56
參考文獻………………………………………………………64
附圖……………………………………………………………73
附表……………………………………………………………105
附錄……………………………………………………………108
Abruzzi,K.C., Lacadie,S., and Rosbash,M. (2004). Biochemical analysis of TREX complex recruitment to intronless and intron-containing yeast genes. EMBO J. 23, 2620-2631.
Allsopp,R.C., Vaziri,H., Patterson,C., Goldstein,S., Younglai,E.V., Futcher,A.B., Grieder,C.W., and Harley,C.B. (1992). Telomere length predicts replicative capacity of human fibroblasts. Pro. Natl. Acad. Sci. USA 89, 10114-10118.
Anderson,E.M., Halsey,W.A., and Wuttke,D.S. (2002). Delineation of the high-affinity single-stranded telomeric DNA-binding domain of Saccharomyces cerevisiae Cdc13. Nucleic Acids Res. 30, 4305-4313.
Aparicio,O.M., Billington,B.L., and Gottschling,D.E. (1992). Modifiers of position effects are shared between telomeric and silent mating-type loci in S. cerevisiae. Cell 66, 1279-1287.
Askree,S.H., Yehuda,T., Smolikov,S., Gurevich,R., Hawk,J., Coker,C., Krauskopf,A., Kupiec,M., and McEachern,M.J. (2004). A genome-wide screen for Saccharomyces cerevisiae deletion mutants that affect telomere length. Proc. Natl. Acad. Sci. U. S. A 101, 8658-8663.
Bourns,B.D., Alexander,M.K., Smith,A.M., and Zakian,V.A. (1998). Sir proteins, Rif proteins, and Cdc13p bind Saccharomyces telomeres in vivo. Mol. Cell. Biol. 18, 5600-5608.
Braunstein,M., Rose,A.B., Holmes,S.G., Allis,C.D., and Broach,J.R. (1993). Transcriptional silencing in yeast is associated with reduced nucleosome acetylation. Genes Dev. 7, 592-604.
Chan,C.S.M. and Tye,B.-K. (1983). Organization of DNA sequences and replication origins at yeast telomeres. Cell 33, 563-573.
Chapon,C., Cech,T.R., and Zaug,A.J. (1997). Polyadenylation of telomerase RNA in budding yeast. RNA. 3, 1337-1351.
Cockell,M., Palladino,F., Laroche,T., Kyrion,G., Liu,C., Lustig,A.J., and Gasser,S.M. (1995). The carboxy termini of Sir4 and Rap1 affect Sir3 localization: evidence for a multicomponent complex required for yeast telomeric silencing. J. Cell Biol. 129, 909-924.
Conrad,M.N., Wright,J.H., Wolf,A.J., and Zakian,V.A. (1990). RAP1 protein interacts with yeast telomeres in vivo: overproduction alters telomere structure and decreases chromosome stability. Cell 63, 739-750.
Cuperus,G., Shafaatian,R., and Shore,D. (2000). Locus specificity determinants in the multifunctional yeast silencing protein Sir2. EMBO J. 19, 2641-2651.
Dahlseid,J.N., Lew-Smith,J., Lelivelt,M.J., Enomoto,S., Ford,A., Desruisseaux,M., McClellan,M., Lue,N., Culbertson,M.R., and Berman,J. (2003). mRNAs encoding telomerase components and regulators are controlled by UPF genes in Saccharomyces cerevisiae. Eukaryot. Cell 2, 134-142.
Dallaire,F., Dupuis,S., Fiset,S., and Chabot,B. (2000). Heterogeneous nuclear ribonucleoprotein A1 and UP1 protect mammalian telomeric repeats and modulate telomere replication in vitro. J. Biol. Chem. 275, 14509-14516.
Denisenko,O. and Bomsztyk,K. (2002). Yeast hnRNP K-like genes are involved in regulation of the telomeric position effect and telomere length. Mol. Cell. Biol. 22, 286-297.
Enomoto,S., Glowczewski,L., Lew-Smith,J., and Berman,J.G. (2004). Telomere cap components influence the rate of senescence in telomerase-deficient yeast cells. Mol. Cell. Biol. 24, 837-845.
Felici,F., Cesareni,G., and Hughes,J.M. (1989). The most abundant small cytoplasmic RNA of Saccharomyces cerevisiae has an important function required for normal cell growth. Mol. Cell Biol. 9, 3260-3268.
Ferrezuelo,F., Steiner,B., Aldea,M., and Futcher,B. (2002). Biogenesis of yeast telomerase depends on the importin mtr10. Mol. Cell. Biol. 22, 6046-6055.
Fiset,S. and Chabot,B. (2001). hnRNP A1 may interact simultaneously with telomeric DNA and the human telomerase RNA in vitro. Nucleic Acids Res. 29, 2268-2275.
Fritze,C.E., Verschueren,K., Strich,R., and Easton,E.R. (1997). Direct evidence for SIR2 modulation of chromatin structure in yeast rDNA. EMBO J. 16, 6495-6509.
Garvik,B., Carson,M., and Hartwell,L. (1995). Single-stranded DNA arising at telomeres in cdc13 mutants may constitute a specific signal for the RAD9 checkpoint. Mol. Cell. Biol. 15, 6128-6138.
Gonzalez,C.I., Ruiz-Echevarria,M.J., Vasudevan,S., Henry,M.F., and Peltz,S.W. (2000). The yeast hnRNP-like protein Hrp1/Nab4 marks a transcript for nonsense-mediated mRNA decay. Mol. Cell 5, 489-499.
Gotta,M. and Cockell,M. (1997). Telomeres, not the end of the story. Bioessays 19, 367-370.
Gotta,M., Strahl-Bolsinger,S., Renauld,H., Laroche,T., Kennedy,B.K., Grunstein,M., and Gasser,S.M. (1997). Localization of Sir2p: the nucleolus as a compartment for silent information regulators. EMBO J. 16, 3243-3255.
Gottschling,D.E., Aparicio,O.M., Billington,B.L., and Zakian,V.A. (1990). Position effect at S. cerevisiae telomeres: reversible repression of Pol II transcription. Cell 63, 751-762.
Grandin,N., Damon,C., and Charbonneau,M. (2001). Ten1 functions in telomere end protection and length regulation in association with Stn1 and Cdc13. EMBO J. 20, 1173-1183.
Grandin,N., Reed,S.I., and Charbonneau,M. (1997). Stn1, a new Saccharomyces cerevisiae protein, is implicated in telomere size regulation in association with Cdc13. Genes Dev. 11, 512-527.
Greider,C.W. and Blackburn,E.H. (1989). Telomeric sequence in the RNA of Tetrahymena telomerase required for telomere repeat synthesis. Nature 337, 331-337.
Gross,S. and Moore,C.L. (2001). Rna15 interaction with the A-rich yeast polyadenylation signal is an essential step in mRNA 3'-end formation. Mol. Cell. Biol. 21, 8045-8055.
Hacker,S. and Krebber,H. (2004). Differential export requirements for shuttling serine/arginine-type mRNA-binding proteins. J. Biol. Chem. 279, 5049-5052.
Henderson,E.R. and Blackburn,E.H. (1989). An overhanging 3' terminus is a conserved feature of telomeres. Mol. Cell. Biol. 9, 345-348.
Henry,M., Borland,C.Z., Bossie,M., and Silver,P.A. (1996). Potential RNA binding proteins in Saccharomyces cerevisiae identified as suppressors of temperature-sensitive mutations in NPL3. Genetics 142, 103-115.
Ho,Y., Gruhler,A., Heilbut,A., Bader,G.D., Moore,L., Adams,S.L., Millar,A., Taylor,P., Bennett,K., Boutilier,K., Yang,L., Wolting,C., Donaldson,I., Schandorff,S., Shewnarane,J., Vo,M., Taggart,J., Goudreault,M., Muskat,B., Alfarano,C., Dewar,D., Lin,Z., Michalickova,K., Willems,A.R., Sassi,H., Nielsen,P.A., Rasmussen,K.J., Andersen,J.R., Johansen,L.E., Hansen,L.H., Jespersen,H., Podtelejnikov,A., Nielsen,E., Crawford,J., Poulsen,V., Sorensen,B.D., Matthiesen,J., Hendrickson,R.C., Gleeson,F., Pawson,T., Moran,M.F., Durocher,D., Mann,M., Hogue,C.W., Figeys,D., and Tyers,M. (2002). Systematic identification of protein complexes in Saccharomyces cerevisiae by mass spectrometry. Nature 415, 180-183.
Holmes,S.G., Rose,A.B., Steuerle,K., Saez,E., Sayegh,S., Lee,Y.M., and Broach,J.R. (1997). Hyperactivation of the silencing proteins, Sir2p and Sir3p, causes chromosome loss. Genetics 145, 605-614.
Hoppe,G.J., Tanny,J.C., Rudner,A.D., Gerber,S.A., Danaie,S., Gygi,S.P., and Moazed,D. (2002). Steps in assembly of silent chromatin in yeast: Sir3-independent binding of a Sir2/Sir4 complex to silencers and role for Sir2-dependent deacetylation. Mol. Cell. Biol. 22, 4167-4180.
Hsu,C.L., Chen,Y.S., Tsai,S.Y., Tu,P.J., Wang,M.J., and Lin,J.J. (2004). Interaction of Saccharomyces Cdc13p with Pol1p, Imp4p, Sir4p and Zds2p is involved in telomere replication, telomere maintenance and cell growth control. Nucleic Acids Res. 32, 511-521.
Huang,J. and Moazed,D. (2003). Association of the RENT complex with nontranscribed and coding regions of rDNA and a regional requirement for the replication fork block protein Fob1 in rDNA silencing. Genes Dev. 17, 2162-2176.
Hughes,T.R., Weilbaecher,R.G., Walterscheid,M., and Lundblad,V. (2000). Identification of the single-strand telomeric DNA binding domain of the Saccharomyces cerevisiae Cdc13 protein. Pro. Natl. Acad. Sci. USA 97, 6457-6462.
Hurt,E., Luo,M.J., Rother,S., Reed,R., and Strasser,K. (2004). Cotranscriptional recruitment of the serine-arginine-rich (SR)-like proteins Gbp2 and Hrb1 to nascent mRNA via the TREX complex. Proc. Natl. Acad. Sci. U. S. A 101, 1858-1862.
Ishikawa,F., Matunis,M.J., Dreyfuss,G., and Cech,T.R. (1993). Nuclear proteins that bind the pre-mRNA 3' splice site sequence r(UUAG/G) and the human telomeric DNA sequence d(TTAGGG)n. Mol. Cell. Biol. 13, 4301-4310.
Joeng,K.S., Song,E.J., Lee,K.J., and Lee,J. (2004). Long lifespan in worms with long telomeric DNA. Nat. Genet. 36, 607-611.
Johnson,E.S. and Gupta,A.A. (2001). An E3-like factor that promotes SUMO conjugation to the yeast septins. Cell 106, 735-744.
Kessler,M.M., Henry,M.F., Shen,E., Zhao,J., Gross,S., Silver,P.A., and Moore,C.L. (1997). Hrp1, a sequence-specific RNA-binding protein that shuttles between the nucleus and the cytoplasm, is required for mRNA 3'-end formation in yeast. Genes Dev. 11, 2545-2556.
Ko,T.P., Lin,J.J., Hu,C.Y., Hsu,Y.H., Wang,A.H., and Liaw,S.H. (2003). Crystal structure of yeast cytosine deaminase. Insights into enzyme mechanism and evolution. J. Biol. Chem. 278, 19111-19117.
Konkel,L.M.C., Enomoto,S., Chamberlain,E.M., and McCune-Zierath,P. (1995). A class of single-stranded telomeric DNA-binding proteins required for Rap1p localization in yeast nuclei. Pro. Natl. Acad. Sci. USA 92, 5558-5562.
LaBranche,H., Dupuis,S., Ben-David,Y., Bani,M.-R., Wellinger,R.J., and Chabot,B. (1998). Telomere elongation by hnRNP A1 and a derivative that interacts with telomeric repeats and telomerase. Nat. Genet. 19, 199-202.
Lahue,E., Heckathorn,J., Meyer,Z., Smith,J., and Wolfe,C. (2005). The Saccharomyces cerevisiae Sub2 protein suppresses heterochromatic silencing at telomeres and subtelomeric genes. Yeast 22, 537-551.
Larrivee,M. and Wellinger,R.J. (2006). Telomerase- and capping-independent yeast survivors with alternate telomere states. Nat. Cell Biol. 8, 741-747.
Lee,S.E., Moore,J.K., Holmes,A., Umezu,K., Kolodner,R.D., and Haber,J.E. (1998). Saccharomyces Ku70, Mre11/Rad50, and RPA proteins regulate adaptation to G2/M arrest after DNA damage. Cell 94, 399-409.
Lew,J.E., Enomoto,S., and Berman,J. (1998). Telomere length regulation and telomeric chromatin require the nonsense-mediated mRNA decay pathway. Mol. Cell. Biol. 18, 6121-6130.
Lin,C.Y., Chang,H.H., Wu,K.J., Tseng,S.F., Lin,C.C., Lin,C.P., and Teng,S.C. (2005). Extrachromosomal telomeric circles contribute to Rad52-, Rad50-, and polymerase delta-mediated telomere-telomere recombination in Saccharomyces cerevisiae. Eukaryot. Cell 4, 327-336.
Lin,J.-J. and Zakian,V.A. (1994). Isolation and characterization of two Saccharomyces cerevisiae genes that encode proteins that bind to (TG1-3)n single strand telomeric DNA in vitro. Nucleic Acid Res. 22, 4906-4913.
Lin,J.-J. and Zakian,V.A. (1996). The Saccharomyces CDC13 protein is a single-strand TG1-3 telomeric DNA-binding protein in vitro that affects telomere behavior in vivo. Pro. Natl. Acad. Sci. USA 93, 13760-13765.
Lin,Y.C., Hsu,C.L., Shih,J.W., and Lin,J.J. (2001). Specific binding of single-stranded telomeric DNA by Cdc13p of Saccharomyces cerevisiae. J. Biol. Chem. 276, 24588-24593.
Louis,E.J. (1995). The chromosome ends of Saccharomyces cerevisiae. Yeast 11, 1553-1573.
Louis,E.J., Naumova,E.S., Lee,A., Gennadi,N., and Haber,J.E. (1994a). The chromosome end in yeast: its mosaic nature and influence on recombination dynamics. Genetics 136, 789-802.
Louis,E.J., Naumova,E.S., Lee,A., Naumov,G., and Haber,J.E. (1994b). The subtelomeric Y' repeat family in Saccharomyces cerevisiae: an experimental system for repeated sequence evolution. Genetics 136, 789-802.
Lundblad,V. and Blackburn,E.H. (1993). An alternative pathway for yeast telomere maintenance rescues est1- senescence. Cell 73, 347-360.
Marshall,M., Mahoney,D., Rose,A., Hicks,J.B., and Broach,J.R. (1987). Functional domains of SIR4, a gene required for position effect regulation in Saccharomyces cerevisiae. Mol. Cell Biol. 7, 4441-4452.
Moazed,D. (2001). Common themes in mechanisms of gene silencing. Mol. Cell 8, 489-498.
Nugent,C.I., Hughes,T.R., Lue,N.F., and Lundblad,V. (1996). Cdc13p: A single-strand telomeric DNA-binding protein with a dual role in yeast telomere maintenance. Science 274, 249-252.
Palladino,F., Laroche,T., Gilson,E., Axelrod,A., Pillus,L., and Gasser,S.M. (1993). SIR3 and SIR4 proteins are required for the positioning and integrity of yeast telomere. Cell 75, 543-555.
Pang,T.-L., Wang,C.-Y., Hsu,C.-L., Chen,M.-Y., and Lin,J.-J. (2003). Exposure of single-stranded telomeric DNA causes G2/M cell cycle arrest in Saccharomyces cerevisiae. The Journal of Biological Chemistry 278, 9318-9321.
Paulovich,A.G., Margulies,R.U., Garvik,B.K., and Hartwell,L. (1997). RAD9, RAD17, and RAD24 are required for S phase regulation in Saccharomyces response to DNA damage. Genetics 145, 45-62.
Petracek,M.E., Konkel,L.M., Kable,M.L., and Berman,J. (1994). A Chlamydomonas protein that binds single-stranded G-strand telomere DNA. EMBO J. 13, 3648-3658.
Petreaca,R.C., Chiu,H.C., Eckelhoefer,H.A., Chuang,C., Xu,L., and Nugent,C.I. (2006). Chromosome end protection plasticity revealed by Stn1p and Ten1p bypass of Cdc13p. Nat. Cell Biol. 8, 748-755.
Renauld,H., Aparicio,O.M., Zierath,P.D., Billington,B.L., Chhablani,S.K., and Gottschling,D.E. (1993). Silent domains are assembled continuously from the telomere and are defined by promoter distance and strength, and SIR3 dosage. Genes Dev. 7, 1133-1145.
Rondon,A.G., Jimeno,S., Garcia-Rubio,M., and Aguilera,A. (2003). Molecular evidence that the eukaryotic THO/TREX complex is required for efficient transcription elongation. J. Biol. Chem. 278, 39037-39043.
Roy,N. and Runge,K.W. (2000). Two paralogs involved in transcriptional silencing that antagonistically control yeast life span. Current Biology 10, 111-114.
Rusche,L.N., Kirchmaier,A.L., and Rine,J. (2003). The establishment, inheritance, and function of silenced chromatin in Saccharomyces cerevisiae. Annu. Rev. Biochem. 72, 481-516.
Sandell,L.L. and Zakian,V.A. (1993). Loss of a yeast telomere: arrest, recovery, and chromosome loss. Cell 75, 729-739.
Schiestl,R.H., Reynolds,P., Prakash,S., and Prakash,L. (1989). Cloning and sequence analysis of the Saccharomyces cerevisiae RAD9 gene and further evidence that its product is required for cell cycle arrest induced by DNA damage. Mol. Cell. Biol. 9, 1882-1896.
Schneider,B.L., Seufert,W., Steiner,B., Yang,Q.H., and Futcher,A.B. (1995). Use of polymerase chain reaction epitope tagging for protein tagging in Saccharomyces cerevisiae. Yeast 11, 1265-1274.
Senger,B., Simos,G., Bischoff,F.R., Podtelejnikov,A., Mann,M., and Hurt,E. (1998). Mtr10p functions as a nuclear import receptor for the mRNA-binding protein Npl3p. EMBO J. 17, 2196-2207.
Shore,D. (1994). RAP1: a protein regulator in yeast. Trends Genet. 10, 408-412.
Shore,D. and Nasmyth,K. (1987). Purification and cloning of a DNA binding protein from yeast that binds to both silencer and activator elements. Cell 51, 721-732.
Siede,W., Friedberg,A.S., Dianova,I., and Friedberg,E.C. (1994). Characterization of G1 checkpoint control in the yeast Saccharomyces cerevisiae following exposure to DNA-damaging agents. Genetics 138, 271-281.
Singer,M.E. and Gottschling,D.E. (1994). TLC1: template RNA component of Saccharomyces cerevisiae telomerase. Science 266, 404-409.
Smith,J.R. and Pereira-Smith,O.M. (1996). Replicative senescence: implications for in vivo aging and tumor suppression. Science 273, 63-67.
Smith,J.S., Brachmann,C.B., Pillus,L., and Boeke,J.D. (1998). Distribution of a limited Sir2 protein pool regulates the strength of yeast rDNA silencing and is modulated by Sir4p. Genetics 149, 1205-1219.
Strahl-Bolsinger,S., Hecht,A., Luo,K., and Grunstein,M. (1997). Sir2 and Sir4 interactions differ in core and extended telomeric heterochromatin in yeast. Genes Dev. 11, 83-93.
Straight,A.F., Shou,W., Dowd,G.J., Turck,C.W., Deshaies,R.J., Johnson,A.D., and Moazed,D. (1999). Net1, a Sir2-associated nucleolar protein required for rDNA silencing and nucleolar integrity. Cell 97, 245-256.
Strasser,K., Masuda,S., Mason,P., Pfannstiel,J., Oppizzi,M., Rodriguez-Navarro,S., Rondon,A.G., Aguilera,A., Struhl,K., Reed,R., and Hurt,E. (2002). TREX is a conserved complex coupling transcription with messenger RNA export. Nature 417, 304-308.
Sussel,L. and Shore,D. (1991). Separation of transcriptional activation and silencing functions of the RAP1-encoded repressor/activator protein 1: isolation of viable mutants affecting both silencing and telomere length. Proc. Natl. Acad. Sci. U. S. A 88, 7749-7753.
Teng,S.C. and Zakian,V.A. (1999). Telomere-telomere recombination is an efficient bypass pathway for telomere maintenance in Saccharomyces cerevisiae. Mol. Cell. Biol. 19, 8083-8093.
Wang,M.-J., Lin,Y.-C., Pang,T.-L., Lee,J.-M., Chou,C.-C., and Lin,J.-J. (2000). Telomere-binding and Stn1p-interacting activities are required for the essential function of Saccahromyces cerevisiae Cdc13p. Nucleic Acid Res. 28, 4733-4741.
Weiler,K.S. and Wakimoto,B.T. (1995). Heterochromatin and gene expression in Drosophila. Annu. Rev. Genet. 29, 577-605.
Weinert,T.A. and Hartwell,L. (1990). Characterization of RAD9 of Saccharomyces cerevisiae and evidence that its function acts posttranscriptionally in cell cycle arrest after DNA damage. Mol. Cell. Biol. 10, 6554-6564.
Weinert,T.A. and Hartwell,L. (1993). Cell cycle arrest of cdc mutants and specificity of the RAD9 checkpoint. Genetics 134, 63-80.
Weinert,T.A. and Hartwell,L.H. (1988). The RAD9 gene controls the cell cycle response to DNA damage in Saccharomyces cerevisiae. Science 241, 317-322.
Wellinger,R.J., Wolf,A.J., and Zakian,V.A. (1993). Saccharomyces telomeres acquires single-stranded TG1-3 tails late in S phase. Cell 72, 51-60.
Will,C.L. and Luhrmann,R. (2001). Spliceosomal UsnRNP biogenesis, structure and function. Curr. Opin. Cell Biol. 13, 290-301.
Windgassen,M. and Krebber,H. (2003). Identification of Gbp2 as a novel poly(A)+ RNA-binding protein involved in the cytoplasmic delivery of messenger RNAs in yeast. EMBO Rep. 4, 278-283.
Windgassen,M., Sturm,D., Cajigas,I.J., Gonzalez,C.I., Seedorf,M., Bastians,H., and Krebber,H. (2004). Yeast shuttling SR proteins Npl3p, Gbp2p, and Hrb1p are part of the translating mRNPs, and Npl3p can function as a translational repressor. Mol. Cell. Biol. 24, 10479-10491.
Wright,J.H., Gottschling,D.E., and Zakian,V.A. (1992). Saccarchromyces telomeres assume a non-nucleosomal chromatin structure. Genes Dev. 6, 197-210.
Zakian,V.A. (1995). Telomeres: beginning to understand the end. Science 270, 1601-1607.
Zubko,M.K. and Lydall,D. (2006). Linear chromosome maintenance in the absence of essential telomere-capping proteins. Nat. Cell Biol. 8, 734-740.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊