跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.62) 您好!臺灣時間:2025/11/15 19:12
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:呂奎宛
研究生(外文):Kuei-Wan Lu
論文名稱:虛擬電廠策略之整合性環境評估
論文名稱(外文):An Integrated Environmental Assessment of Virtual Power Plant
指導教授:馬鴻文馬鴻文引用關係
指導教授(外文):Hwong-Wen Ma
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:環境工程學研究所
學門:工程學門
學類:環境工程學類
論文種類:學術論文
論文出版年:2010
畢業學年度:98
語文別:中文
論文頁數:130
中文關鍵詞:虛擬電廠策略投入產出分析生命週期評估分散式電力用電效率
外文關鍵詞:Virtual power plantLife cycle assessmentElectricity Input-output analysisElectricity efficiencyDecentralized generation system
相關次數:
  • 被引用被引用:5
  • 點閱點閱:716
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究係應用虛擬電廠之概念,透過電力消費型態的改變以減少電力使用造成之環境衝擊,其中電力消費採用投入產出分析方法從最終需求之觀點加以探討,並以生命週期評估方法量化應用虛擬電廠策略在人體毒性、呼吸效應、光化學煙霧、陸域生態毒性、水域生態毒性、水體優養化、水體酸化與全球暖化八項環境衝擊項目可能造成之環境衝擊變化。
根據2008年電力投入產出分析之結果,目前產業用電量約占台灣總用電量81%,若進一步將產業電力耗用解構為家計消費、出口與其他需求三部分,其中出口用電量約占產業總電力耗用58%。另一方面,根據電力電力投入產出分析結果,台灣電力消費之關鍵產業為化學材料、紡織品、塑膠製品、紙漿紙及紙製品、非金屬礦物製品、鋼鐵、電力設備、化學製品、金屬製品、電腦電子與光學產品與電子零組件共11個產業部門。
根據目前台灣之電力消費現況,本研究透過用電效率提升與供電結構改變來作為虛擬電廠策略。首先在用電效率的部分,提升關鍵產業與非關鍵產業之用電效率30%,分別可減少產業總電力耗用約16.38%與13.62%;其次,針對關鍵產業改變供電結構,其中以燃氣汽電共生替換既有汽電共生系統供電可減少致癌人體毒性、呼吸效應、陸域生態毒性與水體酸化約9-17%之環境衝擊,而設置太陽能光電系統與微型風力發電機兩類分散式電力替換台電系統供電則可減少非致癌人體毒性、水域生態毒性、水體優養化約6-10%之環境衝擊,而上述之供電結構改變可減少光化學煙霧與全球暖化約7-9%之環境衝擊。整體而言,藉由改變電力消費型態之虛擬電廠策略的確可以減少因電力消費所造成之環境衝擊。


Virtual power plant (VPP) is contemplated in this research, which considers electricity supply and electricity final demand, to decrease the environmental impact by changing of the electricity consumption patterns. The electricity consumption varied with electricity final demand is analyzed by the electricity input-output analysis (EIOA), and the environment impact is quantified by life cycle assessment (LCA), including human toxicity (carcinogenic and non-carcinogenic), respiratory, photochemical oxidation, terrestrial ecotoxicity, aquatic ecotoxicity, aquatic acidification, aquatic eutrophication and global warming.
According to EIOA in 2008, the electricity consumptions of industries account for 80% total electricity consumption in Taiwan, and the electricity consumptions of industries are provided to household consumption, export, and other demands. Export is the main demand, which accounts for 58% of the industrial electricity consumption. Besides, sensitive industries of electricity consumption in Taiwan are divided by EIOA into 11 industries, including chemical material, textiles mills, pulp paper and paper products, chemical products, plastic products, non-metallic mineral products, iron and steel, fabricated metal products, electronic parts & components, computers electronic & Optic Prod and electrical equipment.
Compared with EIOA in 2008, VPP is conducted in electricity strategy by adjusting electricity efficiency and electricity supply structure. On one hand, increasing 30% electricity efficiency in sensitive industries and insensitive industries reduce 16.38% and 13.62% industrial electricity consumption, respectively. On the other hand, electricity supply structure of sensitive industries is modified by using liquid nature gas (LNG) as an alternative fuel for the cogeneration system and installing decentralized generation system (DES). The fomer reduces 9-17% environmental impact in human toxicity (carcinogenic), respiratory, terrestrial ecotoxicity and aquatic acidification; the latter reduces 6-10% environmental impact in human toxicity (non-carcinogenic), aquatic ecotoxicity and aquatic eutrophication; and both reduce 7-9% environmental impact in photochemical oxidation and global warming. In summary, owing to reduction of environmental impact categorically, VPP is revealed enough as the electricity consumption pattern to decrease environmental impact.


口試委員審定書 i
誌謝 ii
摘要 iii
Abstract iv
總目錄 vi
圖目錄 ix
表目錄 xi
第一章 緒論 1
1.1研究背景 1
1.2研究目的 3
1.3研究內容與流程 4
第二章 文獻回顧 7
2.1虛擬電廠簡介 7
2.1.1虛擬電廠之概念 7
2.1.2虛擬電廠策略之應用 9
2.2能源流分析方法 18
2.2.1投入產出分析 19
2.2.2投入產出分析應用於電力消費 21
2.3生命週期評估方法應用 23
2.3.1生命週期評估 23
2.3.2生命週期評估應用於分散式電力系統 27
第三章 研究方法 31
3.1研究範疇 33
3.2電力流分析 34
3.2.1投入產出分析與電力乘數分析 36
3.2.2產業關聯分析 39
3.3環境衝擊評估 42
3.3.1 TWEnLCA簡介 42
3.3.2環境衝擊評估方法 44
3.4虛擬電廠策略分析 48
3.4.1策略分析背景 48
3.4.2分散式電力設置規劃 50
3.5研究限制 53
第四章 研究案例分析 55
4.1台灣地區電力流分析 55
4.1.1電力供需結構分析 55
4.1.2單位直接電力耗用與單位最終需求電力耗用 59
4.1.3最終需求電力耗用 62
4.1.4電力耗用關聯分析 66
4.2電力消費之環境衝擊評估 68
4.2.1供電系統之環境衝擊比較 68
4.2.2台灣電力消費環境衝擊 73
4.3虛擬電廠策略應用 77
4.3.1關鍵產業篩選 77
4.3.2用電效率提升造成之電力耗用差異 78
4.3.3供電結構變動之情境分析 80
第五章 結論與建議 99
5.1結論 99
5.2建議 101
參考文獻 103
附錄一 產業關聯部門定義 111
附錄二 產業經營統計資料 116
附錄三 台灣地區日照強度分布圖 118
附錄四 台灣地區50 m平均基本風速分布圖 119
附錄五 台灣地區50 m平均基本風速大於3 m/s之區域 120
附錄六 能源平衡表與產業關聯部門對照表 121
附錄七 產業於各縣市設置分散式電力之發電量比較 123
附錄八 供電系統之能資源耗用比較 125
附錄九 供電系統之環境衝擊比較 126
附錄十 供電系統於損害導向之衝擊比較 127
附錄十一 產業部門之各項環境衝擊 128
附錄十二 設置分散式電力之產業用電環境損害比較 130



1.王塗發,1986,投入產出分析及其應用– 台灣地區實證研究,台灣銀行季刊,37(1):186-218。
2.水利署,台灣地區民國97年工業用水量統計報告
3.中威風力發電股份有限公司,2010,台中縣大安鄉、大甲鎮設置風力發電廠興建計畫 環境影響差異分析報告。
4.中國石油股份有限公司大林煉油廠興建汽電共生設備環境影響說明書
5.中鼎工程公司等,2005,空氣污染物排放量清冊更新管理及空氣品質質損量推估,行政院環保署EPA-94-11-03-A139。
6.中興工程,2009,固定污染源毒性空氣污染物( 戴奧辛及重金屬) 管制規範研擬、控制技術評估及排放清冊調查計畫,行政院環保署EPA-95-FA12-03-A106。
7.台塑石化公司,2010,六輕五期計畫環境影響說明書初稿。
8.台灣電力股份有限公司,2008,台灣電源開發規劃報告。
9.台灣電力股份有限公司,2010,彰工火力第一二號機發電計畫環境影響評估報告書初稿。
10.台灣電力股份有限公司,2009,火力發電廠空氣污染改善之績效指標。
11.台灣電力股份有限公司,2009,97年台電統計年報。
12.台灣電力股份有限公司,2009台灣電力公司永續報告書。
13.台綜院,2007,「能源產業溫室氣體盤查與認證、驗證推動」,能源局委辦計畫。
14.行政院主計處,2009,97年雙面平減表。
15.行政院主計處,2009,95產業關聯表。
16.全國能源會議,2009,我國再生能源發展潛力說明。
17.馬鴻文,洪明龍,趙家緯,2007,台灣永續廢棄物管理決策支援系統之建立-物質流、生命週期評估與環境風險評估之整合研究(TWMLCA)。
18.東鋼能源股份有限公司,龍港天然氣發電廠興建計畫環境影響說明書。
19.原能會,放射性廢棄物設施管制報告。
20.洪明龍,馬鴻文,趙家緯,2008,以區域投入產出模型分析台灣各縣市電力供給與消費結構,中華民國環境工程學會,環境規劃與管理研討會。
21.陳玫如,2004,我國需量反應制度之可行性研究,台灣綜合研究院。
22.張琪惠,福島康裕,2007,考量不同政策下之太陽能光電系統投資回收時間,中華民國環境工程學會,環境規劃與管理研討會。
23.經濟部能源局,2008,96年能源年報。
24.經濟部能源局,2009,97年能源平衡表。
25.經濟部能源局,2008,97-106年長期負載預測與電源開發規劃摘要報告。
26.新宇能源開發股份有限公司,南科汽電共生廠新建計畫環境影響說明書。
27.環保署,空氣污染排放清冊(Taiwan Emission Data System, TEDS 7.0)
28.環保署,2010,水污染排放申報。
29.衛適密廢物減量科技有限公司,2005,大型國營事業及汽電共生廠之事業廢棄物清理技術調查評估計畫,行政院環保署EPA-94-H102-02-135
30.藤井繪里子,2007,考量可用能之生命週期評估─以臺灣生質酒精為例,台大環工所碩士論文。
31.Alanne, K. and Saari, A. 2006. Distributed energy generation and sustainable development. Renewable & Sustainable Energy Reviews 10 (6) 539-558.
32.Albadi, M. H., El-Saadany, E. F. 2008. A summary of demand response in electricity market. Electric Power Systems Research, 78, 1989-1996.
33.Alcántara, V., Padilla, E. 2003. “Key” sectors in final energy consumption: an input-output application to the Spanish case. Energy Policy, 31(15), 1673-1678.
34.Allen, S. R., Hammond, G. P.,and McManus, M. C. 2008. Energy analysis and environmental life cycle assessment of micro-wind turbine. Proc. IMechE vol.222 part A: J. Power and Energy, (A7), pp. 669-684.
35.Azzopardi, B. and Mutale, I. 2010. Life cycle analysis for future photovoltaic systems using hybrid solar cells. Renewable and Sustainable Energy Reviews, 14, 1130-1134.
36.Bahaj, A. S., Myers, L., and James, P. A. B. 2007. Urban energy generation: influence of micro-wind turbine output on electricity consumption in buildings. Energy Build., 39(2). 154-165.
37.Breuil and Martial, T. 1992. Input-Output Analysis and Pollutant Emissions in France. Energy Journal, 13(3), 173-184.
38.Caster, S. D., 1998. Rose, A. Carbon dioxide emissions in the US economy. Environmental and Resource Economics, 11(3-4), 349-363.
39.Celik, A. N., Muneer, T., Clarke, P. 2007. An investigation into micro wind turbine energy systems for their utilization in urban areas and their life cycle assessment. Proc. IMechE vol. 221 part A: J. Power and Energy. pp. 1107-1117.
40.Wheeler, D and Ummel, K. 2008. Calculating CARMA: Global Estimation of Emissions from the Power Sector. Center for Global Development, Working Paper No.145.
41.Ecoinvent Data v2.0.
42.Franke, M., Rolli, D., Kamper, A., Dietrich, A., Geyer-Schulz, A. Lockemann, P., Schmeck, H., Weinhardt, C. 2005. Iimpacts of distributed generation from virtual power plants. Proc. 11th Annual Internatl. Sustainable Development Research Conf., 1–12.
43.Frankl, P., Menichetti, M., Raugei, M. 2008. Technical paper no 11.2-RSIa: Final report on PV technology. EU integrated Project “New Energy Externalities Developments for Sustainability” (NEEDS).
44.Finnveden, G., Hauschild, M. Z., Ekvall, T., Guinée, J., Heijungs, R., Hellweg, S., Koehler, A., Pennington, D., Suh, S. 2009. Recent developments in life cycle assessment. Journal of Environmental Management, 91, 1-21.
45.Gellings, C. W., Chamberlin, J. H. 1988. Demand-side management: concepts and methods. Lilburn, GA: Fairmont Press.
46.Global Emission Model for Integrated Systems (GEMIS) Version 4.4
47.Góralczyk, M. 2003. Life-cycle assessment in renewable energy sector. Applied Energy, 75, 205-211.
48.Hondo, H. 2005. Life cycle GHG emission analysis of power generation systems-Japanese case. Energy, 30, 2042-2056.
49.International Energy Agency (IEA). 2008. Empowering variable renewable – optional for flexible electricity systems.
50.International Energy Agency Photovoltaic Power Systems Programme. 2007. Task 1 Report: Trends in photovoltaic applications. Survey report of selected IEA countries between 1992 and 2007.
51.ISO. 2006. Environmental management – Life Cycle Assessment- Principles and Framework.
52.ISO. 2006. Environmental management – Life Cycle Assessment- Requirement and Guideline.
53.Kannan, R., Leong, K. C., Osman, R., Ho, H. K., Tso, C. P. 2006. Life cycle assessment study of solar PV systems: an example of a 2.7 kWp distributed solar PV system in Singapore. Solar Energy, 80(5), 555-563.
54.Kaundinya, D. P; Balachandra, P., Ravindranath, N.H. 2009. Grid-connected versus stand-alone energy systems for decentralized power—A review of literature. Renewable and Sustainable Energy Reviews 13, 2041–2050.
55.Koeppel, G. 2003. Distributed generation literature review and outline of the swiss situation. Internal report. pp 12-13.
56.Liu, H. T., Guo, J. E., Xi, Y. M. 2009. Comprehensive evaluation of household indirect energy consumption and impacts of alternative energy policies in China by input-output analysis. Energy Policy, 37, 3194-3204.
57.Lovins, A. 1989. The Negawatt Revolution: Solving the CO2 Problem. Keynote Address at Green Energy Conference, Montreal.
58.Mu, T., Xia, Q., Kang, C. 2010. Input-output table of electricity demand and its application. Energy, 35, 326-331.
59.Munksgaard, J., Wier, M., Lenzen, M., Dey, C. 2005. Using input-output analysis to measure the environmental pressure of consumption at different spatial levels. Journal of Industrial Ecology, 9(1-2), 169-185.
60.Nakamura, S., Kondo, Y. 2008. Input-Output Analysis of Waste Management. Journal of Industrial Ecology, 6(1), 39-63.
61.NEEDS LCI Database, 2009.
62.Osareh, A. S., Pan, J., Rahman, S. 1996. An efficient approach to identify and integrate demand-side management on electric utility generation planning. Electric Power Systems Research, 36, 3-11.
63.Pachauri, S., Spreng, D. 2002. Direct and indirect energy requirements of household in India. Energy Policy, 30(6), 511-523.
64.Pehnt, M. 2005. Environmental impact of future energy systems. Risø international energy conference.
65.Pehnt, M. 2006. Dynamic life cycle assessment (LCA) of renewable energy technologies. Renewable Energy,31(1), 55-71.
66.Pehnt, M. 2008. Environmental impacts of distributed energy systems—The case of micro cogeneration. Environmental science & policy II, 11(1):25-37.
67.Pehnt M., Cames M., Fischer C., Praetorius B., Schneider L., Schumacher K., Vos J.-P. 2006. Micro Cogeneration Towards Decentralized Energy Systems.
68.Pudjianto, D.; Ramsay, C.; Strbac, G. 2007. Virtual power plant and system integration of distributed energy resources. Renewable Power Generation, IET Volume 1, (1)10 – 16.
69.Raugei, M. and Frankl, P. 2009. Life cycle impacts and costs of photovoltaic systems: Current state of art and future outlooks. Energy, 34, 392-399.
70.Rochlin, C. 2009. The Alchemy of Demand Response: Turning Demand into Supply. The electricity journal, 22(9) 10-25.
71.Setiawan, E. A. 2007.Concept and controllability of virtual power plant. Kassel University Press.
72.Schulz, C., Roder, G., Kurrat, M. 2005. Virtual power plants with combination heat and power micro-units. Future power systems, 2005 international conference on 5-5.
73.Steinbergera, J. K., Niela, J. V., Bourga, D. 2009. Profiting from negawatts: Reducing absolute consumption and emissions through a performance-based energy economy. Energy Policy, 37(1), 361-370.
74.Strbac, G. 2008. Demand side management: Benefits and challenges. Energy Policy, 36, 4419-4426.
75.US Department of Energy. 2006. Benefits of Demand Response in Electricity Markets and Recommendations for Achieving them, Report to the United States Congress, , available online: http://eetd.lbl.gov.
76.USEPA,Factor Information Retrieval (FIRE) v. 6.2. 3
77.USEPA, 2006. “Environmental Footprints and Costs of Coal-Based Integrated Gasification Combined Cycle and Pulverized Coal Technologies” EPA-430/R-06/006
78.Varun, Bhat, I. k., Prakash, R. 2009. LCA of renewable energy for electricity generation systems-A review. Renewable and Sustainable Energy Reviews, 13, 1067-1073.
79.Vignolo, M. and Zeballos, R. 2001. Transmission networks or distributed genearation? In First International symposium on distributed generation. Stockholm: Royal institute of tech.
80.World Alliance for Decentralized Energy (WADE). 2003. WADE Guide to DE Technologies – Cogeneration Technologies.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top