跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.81) 您好!臺灣時間:2025/10/04 18:59
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:李至正
研究生(外文):Zhi-Zheng Lee
論文名稱:利用白腐真菌產生的漆氧化酶和錳離子過氧化酶分解四環黴素
論文名稱(外文):Degradation of Tetracycline by Laccase and Manganese Peroxidase Produced by White Rot Fungi.
指導教授:趙維良趙維良引用關係
指導教授(外文):Wei-Liang Chao
口試委員:張碧芬劉秀美
口試委員(外文):Bea-ven ChangShiu-Mei Liu
口試日期:2015-01-05
學位類別:碩士
校院名稱:東吳大學
系所名稱:微生物學系
學門:生命科學學門
學類:微生物學類
論文種類:學術論文
論文出版年:2015
畢業學年度:103
語文別:中文
論文頁數:118
中文關鍵詞:四環黴素漆氧化酶錳離子過氧化酶
外文關鍵詞:TetracyclineLaccaseManganese Peroxidase
相關次數:
  • 被引用被引用:1
  • 點閱點閱:459
  • 評分評分:
  • 下載下載:44
  • 收藏至我的研究室書目清單書目收藏:0
新興汙染物為『新認定及尚未認定』或『未受法規規範』的化學物汙染物,對於人體健康以及生態環境具有風險性。新興汙染物可分為:『藥品及個人護理物品(pharmaceuticals and personal care products,PPCPs)』,『內分泌干擾物質(endocrine disrupting chmemicals,EDCs)』,『工業化學物質』,『生物可分解之合成化學物質』。四環黴素(tetracycline)為新興汙染物之一,屬於藥品及個人護理用品,廣泛用於人類與家畜的疾病治療,為人和家禽共用抗生素,一般污水系統無法有效去污水中的四環黴素,且在地表水中檢測出四環黴素。傳統汙染物的降解,大多使用細菌降解汙染物,然而用細菌降解抗生素是有風險的。白腐真菌(white root fungi)能產生木質素分解酵素,分解大部分的木質素和化合物,此木質素分解酵素系統也已被研究多年,並且廣泛運用在難分解的化合物。本研究利用白腐真菌Perenniporia tephropora TFRI707和實驗室分離株Cerrena unicolor A8所產生漆氧化酶(laccase)和錳離子過氧化酶(manganese Peroxidase)對四環黴素進行降解。首先找出培養基最佳條件,得知分離株A8和TFRI707在1 mM錳離子的GPCSL中能產生最多的漆氧化酶和錳離子過氧化酶。分離株A8及TFRI707在GPL和GPCSL培養基中降解100 ppm四環黴素,結果顯示四環黴素能被降解,且不同的培養基降解速度兩者相同;在培養第8天時加入四環黴素的降解速度,比培養第0天加入四環黴素的降解速度快。將分離株A8和TFRI707進行高溫滅菌,再令其降解四環黴素,結果顯示四環黴素的濃度並未下降,可知兩者的菌絲不會吸附四環黴素。使用無菌水將分離株A8和TFRI707菌絲上的培養基洗去後,置入四環黴素中進行降解,結果顯示兩者的菌絲在沒有培養基的環境下降解四環黴素的速度較慢。在GPL和GPCSL中,分別培養分離株A8和TFRI707 8天後,萃取出培養液中的酵素,並利用其酵素降解四環黴素,效果不佳,四環黴素依然能抑制E. coli 11848的生長。使用錳離子過氧化酶標準品及漆氧化酶標準品分別降解四環黴素,結果顯示錳離子過氧化酶在Sodium tartrate緩衝溶液中能降解四環黴素,而漆氧化酶在1-hydroxybenzotriazole (HBT) 緩衝液中,能在一小時內完全降解四環黴素。以上結果得知,分離株A8和TFRI707可產生漆氧化酶和錳離子過氧化酶並降解四環黴素,在沒有培養基時菌絲體也能降解四環黴素,且其菌絲不會吸附四環黴素。分離株A8和TFRI707培養基萃取酵素、漆氧化酶和錳離子過氧化酶可以降解四環黴素,但必須使用適當的培養基以及正確的介質(mediator),方能更有效得降解四環黴素。
Emerging contaminants are either new or unrecognized chemical that pose risks on human health and ecological environment. It can be divided into four groups: "Pharmaceuticals and personal care products, PPCPs", "Endocrine disrupting chemicals, EDCs" "industrial chemicals "and “Biosynthesis chemicals". Tetracycline is one of the emerging contaminants and belongs to PPCPs. Tetracycline is widely used in the treatment of humans and animals. General sewage system cannot effectively remove tetracycline; also, tetracycline can be detected in most surface water. Traditionally, bacteria are used to break down pollutants, but there is a risk that it might create super bacterial resist with antibiotics. White rot fungi can break down most of the lignin and polycyclic compounds by lignin-degrading enzyme. Lignin-degrading enzyme has been studied for many years. It is widely used in the degradation of compounds which are difficult to degrade. In this study, we used Perenniporia tephropora TFRI707 and laboratory isolates Cerrena unicolor A8 to produce laccase and manganese peroxidase degrade tetracycline. Isolate A8 and TFRI707 could produce highest concentration of enzyme in the 1mM Mn2+ GPCSL medium. Isolate A8 and TFRI707 could degrade 100ppm tetracycline in the GPCSL and GPL, and their degradation rates in these two different mediums were the same. After high-temperature sterilization, Isolate A8 and TFRI707 could not degrade tetracycline in the GPL. This result confirmed that their mycelium do not adsorb tetracycline. After washing mycelium of Isolate A8 and TFRI707 by sterile water, their mycelium was put into tetracycline and executed degradation. The results showed that the degradation rates of both mycelium were slower without medium. Enzymes extracted from the culture medium of GPL and GPCSL had poor degradation ability and tetracycline still could inhibit growth of E.coli 11848. Using manganese peroxidase standard (SIGMA) and laccase standard (SIGMA) to degrade tetracycline, we found that manganese peroxidase could degrade tetracycline in sodium tartrate buffer, and laccase could degrade in 1-hydroxybenzotriazole (HBT) buffer in 1 hour. According to the results above, C. unicolor A8 and P. tephropora TFRI707 could degrade tetracycline, and their mycelium do not absorb tetracycline. Enzymes from mediums, laccase and manganese peroxidase also could degrade tetracycline when appropriate medium and correct mediator is involved. That is, it could be more effective to degrade tetracycline.
中文摘要........................................ I
Abstract....................................... IV
目 錄....................................... VI
表 目 錄...................................... X
圖 目 錄...................................... XI
前 言 ....................................... 1
一、 新興汙染物............................... 1
二、 四環黴素................................. 3
三、 細菌分解抗生素及抗藥性..................... 5
四、 白腐真菌................................. 7
五、 白腐真菌之胞外木質素分解酵素系統............ 9
六、 漆氧化酶的催化與特性...................... 10
七、 錳離子過氧化酶的催化與特性................. 12
八、 白腐真菌降解抗生素 ........................ 14
實 驗 目 的................................... 17
材 料 方 法................................... 18
一、 菌株來源與保存............................ 18
二、 培養基成分............................... 18
三、 菌種保存................................. 19
四、 漆氧化酶酵素活性測量....................... 19
五、 錳離子過氧化酶酵素活性測量................. 20
六、 四環黴素的偵測............................ 22
七、 抗菌能力的測試............................ 23
八、 漆氧化酶產量和錳離子過氧化酶之初步篩選....... 24
九、 培養基條件最佳化.......................... 24
十、 分離株A8和TFRI707於培養基中降解四環黴素..... 25
十一、 分離株A8和TFRI707菌絲吸附四環黴素.......... 25
十二、 分離株A8和TFRI707的菌絲降解四環黴素........ 26
十三、 萃取培養基中的酵素........................ 27
十四、 培養基萃取酵素降解四環黴素................. 27
十五、 漆氧化酶降解四環黴素...................... 28
十六、 錳離子過氧化酶降解四環黴素................. 29
十七、 酵素活性測量方法的確認..................... 30
結 果..................................... 31
一、 漆氧化酶產量和錳離子過氧化酶之初步篩選....... 31
二、 培養基條件最佳化.......................... 31
三、 四環黴素濃度的測量 ......................... 33
四、 分離株A8和TFRI707於培養基中降解四環黴素..... 33
五、 分離株A8和TFRI707吸附四環黴素.............. 43
六、 分離株A8和TFRI707的菌絲降解四環黴素........ 45
七、 培養液的酵素降解四環黴素................... 48
八、 漆氧化酶降解四環黴素...................... 50
九、 錳離子過氧化酶降解四環黴素................. 51
十、 酵素活性測量法的準確性.................... 53
討 論.................................... 54
結 論.................................... 67
參 考 文 獻................................... 69

王美惠,1995,白腐真菌對偶氮染料去色作用之探討。東吳大學微生物學系碩士論文。

林正芳,林郁真,余宗賢,2008,新興汙染物(抗生素與止痛藥)於特定汙染源環境之流佈。2008年持久性有機汙染物(含戴奧辛)研討會。

遊凱翔,2006,探討白腐真菌之錳離子過氧化酵素於液態和半固態環境下的最適生產條件。東吳大學微生物學系碩士論文。

張如慧,2007,白腐真菌漆氧化酵素之純化與染料退色能力探討。東吳大學微生物學系碩士論文。

賽逸昕,2005,探討白腐真菌之漆氧化酵素的最佳生產條件。東吳大學微生物學系碩士論文。

Adler, E. (1977). Lignin chemistry—past, present and future. Wood Sci Technol 11, 169–218.

Arora, D.S., and Gill, P.K. (2001). Effects of various media and supplements on laccase production by some white rot fungi. Bioresource technology 77, 89-91.

Ben Younes, S., Mechichi, T., and Sayadi, S. (2007). Purification and characterization of the laccase secreted by the white rot fungus Perenniporia tephropora and its role in the decolourization of synthetic dyes. J Appl Microbiol 102, 1033-1042.

Bound, J.P., and Voulvoulis, N. (2005). Household disposal of pharmaceuticals as a pathway for aquatic contamination in the United kingdom. Environmental health perspectives 113, 1705-1711.

Bourbonnais, R., and Paice, M.G. (1990). Oxidation of non-phenolic substrates. An expanded role for laccase in lignin biodegradation. FEBS letters 267, 99-102.

Breen, A., and Singleton, F.L. (1999). Fungi in lignocellulose breakdown and biopulping. Current opinion in biotechnology 10, 252-258.

Brown, J.A., Glenn, J.K., and Gold, M.H. (1990). Manganese regulates expression of manganese peroxidase by Phanerochaete chrysosporium. J Bacteriol 172, 3125-3130.

Brown, R.D., and Taylor, P. (1983). The influence of antibiotics on agonist occupation and functional states of the nicotinic acetylcholine receptor. Molecular pharmacology 23, 8-16.

Call, H.P., and Mücke, I. (1997). History, overview and applications of mediated lignolytic systems, especially laccase-mediator-systems (Lignozym®-process). Journal of Biotechnology 53, 163-202.

Claus, H. (2004). Laccases: structure, reactions, distribution. Micron 35, 93-96.
D'Acunzo, F., Galli, C., and Masci, B. (2002). Oxidation of phenols by laccase and laccase-mediator systems. European journal of biochemistry / FEBS 269, 5330-5335.

D'Souza, T.M., Boominathan, K., and Reddy, C.A. (1996). Isolation of laccase gene-specific sequences from white rot and brown rot fungi by PCR. Appl Environ Microbiol 62, 3739-3744.

D'Souza, T.M., Merritt, C.S., and Reddy, C.A. (1999). Lignin-modifying enzymes of the white rot basidiomycete Ganoderma lucidum. Appl Environ Microbiol 65, 5307-5313.

Daughton, C.G., and Ternes, T.A. (1999). Pharmaceuticals and personal care products in the environment: agents of subtle change? Environ Health Perspect 107 Suppl 6, 907-938.

Dhawan, S., Lal, R., Hanspal, M., and Kuhad, R.C. (2005). Effect of antibiotics on growth and laccase production from Cyathus bulleri and Pycnoporus cinnabarinus. Bioresource technology 96, 1415-1418.

Dietrich, D., Hickey, W.J., and Lamar, R. (1995). Degradation of 4,4'-dichlorobiphenyl, 3,3',4,4'-tetrachlorobiphenyl, and 2,2',4,4',5,5'-hexachlorobiphenyl by the white rot fungus Phanerochaete chrysosporium. Applied and environmental microbiology 61, 3904-3909.

Dowdy, J., Brower, S., and Miller, M.R. (2003). Acetaminophen exhibits weak antiestrogenic activity in human endometrial adenocarcinoma (Ishikawa) cells. Toxicological sciences : an official journal of the Society of Toxicology 72, 57-65.

Duran, R., Deschler, C., Precigou, S., and Goulas, P. (2002). Degradation of chlorophenols by Phanerochaete chrysosporium: effect of 3,4-dichlorophenol on extracellular peroxidase activities. Applied microbiology and biotechnology 59, 284-288.

Eggert, C., Temp, U., Dean, J.F., and Eriksson, K.E. (1996). A fungal metabolite mediates degradation of non-phenolic lignin structures and synthetic lignin by laccase. FEBS letters 391, 144-148.

Fleming, A. (1950). Antibiotic therapy, an introductory article. Med Illus 4, 477-478.

Gianfreda, L., Xu, F., and Bollag, J.-M. (1999). Laccases: A Useful Group of Oxidoreductive Enzymes. Bioremediation Journal 3, 1-26.

Glenn, J.K., and Gold, M.H. (1983). Decolorization of Several Polymeric Dyes by the Lignin-Degrading Basidiomycete Phanerochaete chrysosporium. Applied and environmental microbiology 45, 1741-1747.

Glenn, J.K., and Gold, M.H. (1985). Purification and characterization of an extracellular Mn(II)-dependent peroxidase from the lignin-degrading basidiomycete, Phanerochaete chrysosporium. Archives of biochemistry and biophysics 242, 329-341.

Jacobsen, A.M., and Halling-Sorensen, B. (2006). Multi-component analysis of tetracyclines, sulfonamides and tylosin in swine manure by liquid chromatography-tandem mass spectrometry. Analytical and bioanalytical chemistry 384, 1164-1174.

Johannes, C., and Majcherczyk, A. (2000). Natural mediators in the oxidation of polycyclic aromatic hydrocarbons by laccase mediator systems. Applied and environmental microbiology 66, 524-528.

Jung, H., Xu, F., and Li, K. (2002). Purification and characterization of laccase from wood-degrading fungus Trichophyton rubrum LKY-7. Enzyme and Microbial Technology 30, 161-168.

Kawai, S., Jensen, K.A., Jr., Bao, W., and Hammel, K.E. (1995). New polymeric model substrates for the study of microbial ligninolysis. Applied and environmental microbiology 61, 3407-3414.

Kim, S., Eichhorn, P., Jensen, J.N., Weber, A.S., and Aga, D.S. (2005). Removal of antibiotics in wastewater: Effect of hydraulic and solid retention times on the fate of tetracycline in the activated sludge process. Environmental science & technology 39, 5816-5823.

Kirk, T.K., and Farrell, R.L. (1987). Enzymatic "combustion": the microbial degradation of lignin. Annual review of microbiology 41, 465-505.

Leonowicz, A., Matuszewska, A., Luterek, J., Ziegenhagen, D., Wojtas-Wasilewska, M., Cho, N.S., Hofrichter, M., and Rogalski, J. (1999). Biodegradation of lignin by white rot fungi. Fungal genetics and biology : FG & B 27, 175-185.

Leontievsky, A.A., Vares, T., Lankinen, P., Shergill, J.K., Pozdnyakova, N.N., Myasoedova, N.M., Kalkkinen, N., Golovleva, L.A., Cammack, R., Thurston, C.F., et al. (1997). Blue and yellow laccases of ligninolytic fungi. FEMS microbiology letters 156, 9-14.

Lew, H.T., and French, S.W. (1966). Tetracycline nephrotoxicity and nonoliguric acute renal failure. Arch Intern Med 118, 123-128.

Lloyd-Still, J.D., Grand, R.J., and Vawter, G.F. (1974). Tetracycline hepatotoxicity in the differential diagnosis of postoperative jaundice. The Journal of Pediatrics 84, 366-370.

Lobos, S., Larraín, J., Salas, L., Cullen, D., and Vicuña, R. (1994). Isoenzymes of manganese-dependent peroxidase and laccase produced by the lignin-degrading basidiomycete Ceriporiopsis subvermispora. Microbiology 140, 2691-2698.

Magiorakos, A.P., Srinivasan, A., Carey, R.B., Carmeli, Y., Falagas, M.E., Giske, C.G., Harbarth, S., Hindler, J.F., Kahlmeter, G., Olsson-Liljequist, B., et al. (2012). Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: an international expert proposal for interim standard definitions for acquired resistance. Clin Microbiol Infect 18, 268-281.

Maiti, S.N., Phillips, O.A., Micetich, R.G., and Livermore, D.M. (1998). Beta-lactamase inhibitors: agents to overcome bacterial resistance. Curr Med Chem 5, 441-456.

McDonald, T.A. (2002). A perspective on the potential health risks of PBDEs. Chemosphere 46, 745-755.

Michniewicz, A., Ullrich, R., Ledakowicz, S., and Hofrichter, M. (2006). The white-rot fungus Cerrena unicolor strain 137 produces two laccase isoforms with different physico-chemical and catalytic properties. Appl Microbiol Biotechnol 69, 682-688.

Noah, J.W., Dolan, M.A., Babin, P., and Wollenzien, P. (1999). Effects of tetracycline and spectinomycin on the tertiary structure of ribosomal RNA in the Escherichia coli 30 S ribosomal subunit. J Biol Chem 274, 16576-16581.

Paszczynski, A., and Crawford, R.L. (1995). Potential for Bioremediation of Xenobiotic Compounds by the White-Rot Fungus Phanerochaete chrysosporium. Biotechnology Progress 11, 368-379.

Paszczyński, A., Crawford, R.L., and Huynh, V.-B. (1988). Manganese peroxidase of Phanerochaete chrysosporium: Purification. In Methods in Enzymology, S.T.K. Willis A. Wood, ed. (Academic Press), pp. 264-270.

Peláez, F., Martínez, M.J., and Martínez, A.T. (1995). Screening of 68 species of basidiomycetes for enzymes involved in lignin degradation. Mycological Research 99, 37-42.

Perie, F.H., and Gold, M.H. (1991). Manganese regulation of manganese peroxidase expression and lignin degradation by the white rot fungus Dichomitus squalens. Applied and environmental microbiology 57, 2240-2245.

Schultz, A., Jonas, U., Hammer, E., and Schauer, F. (2001). Dehalogenation of chlorinated hydroxybiphenyls by fungal laccase. Applied and environmental microbiology 67, 4377-4381.

Srebotnik, E., Jensen, K.A., Kawai, S., and Hammel, K.E. (1997). Evidence That Ceriporiopsis subvermispora Degrades Nonphenolic Lignin Structures by a One-Electron-Oxidation Mechanism. Applied and environmental microbiology 63, 4435-4440.

Steffen, K.T., Hofrichter, M., and Hatakka, A. (2002). Purification and characterization of manganese peroxidases from the litter-decomposing basidiomycetes Agrocybe praecox and Stropharia coronilla. Enzyme and Microbial Technology 30, 550-555.

Suchland, R.J., Sandoz, K.M., Jeffrey, B.M., Stamm, W.E., and Rockey, D.D. (2009). Horizontal transfer of tetracycline resistance among Chlamydia spp. in vitro. Antimicrob Agents Chemother 53, 4604-4611.

Suda, T., Hata, T., Kawai, S., Okamura, H., and Nishida, T. (2012a). Treatment of tetracycline antibiotics by laccase in the presence of 1-hydroxybenzotriazole. Bioresource technology 103, 498-501.

Suda, T., Hata, T., Kawai, S., Okamura, H., and Nishida, T. (2012b). Treatment of tetracycline antibiotics by laccase in the presence of 1-hydroxybenzotriazole. Bioresource technology 103, 498-501.

Tagger, S., Périssol, C., Gil, G., Vogt, G., and Le Petit, J. (1998). Phenoloxidases of the white-rot fungus Marasmius quercophilus isolated from an evergreen oak litter (Quercus ilex L.). Enzyme and Microbial Technology 23, 372-379.

Thurston, C.F. (1994). The structure and function of fungal laccases. Microbiology 140, 19-26.

Tyler, C.R., Jobling, S., and Sumpter, J.P. (1998). Endocrine disruption in wildlife: a critical review of the evidence. Crit Rev Toxicol 28, 319-361.

Wariishi, H., Akileswaran, L., and Gold, M.H. (1988). Manganese peroxidase from the basidiomycete Phanerochaete chrysosporium: spectral characterization of the oxidized states and the catalytic cycle. Biochemistry 27, 5365-5370.

Wen, X., Jia, Y., and Li, J. (2010). Enzymatic degradation of tetracycline and oxytetracycline by crude manganese peroxidase prepared from Phanerochaete chrysosporium. J Hazard Mater 177, 924-928.

Wesenberg, D., Kyriakides, I., and Agathos, S.N. (2003). White-rot fungi and their enzymes for the treatment of industrial dye effluents. Biotechnology advances 22, 161-187.

Whetten, R., and Sederoff, R. (1995). Lignin Biosynthesis. The Plant cell 7, 1001-1013.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top