跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.41) 您好!臺灣時間:2026/01/14 05:48
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:徐俊平
研究生(外文):Chung-ping Hsu
論文名稱:甲醇進料量及過量空氣對快速催化燃燒器暫態溫度分佈之影響
論文名稱(外文):Effect of Methanol Feed Rate and Excess Air on Transient Temperature Profile of a Rapid Catalytic Combustor
指導教授:洪賑城
指導教授(外文):Jan-Chen Hong
學位類別:碩士
校院名稱:大同大學
系所名稱:化學工程學系(所)
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2008
畢業學年度:96
語文別:中文
論文頁數:66
中文關鍵詞:快速催化燃燒器甲醇
外文關鍵詞:Rapid Catalytic CombustorMethanol
相關次數:
  • 被引用被引用:1
  • 點閱點閱:211
  • 評分評分:
  • 下載下載:22
  • 收藏至我的研究室書目清單書目收藏:0
本研究目的為探討空間速度、過量空氣及進料方式對快速催化燃燒器在冷啟動時之暫態溫度分佈之影響。快速催化燃燒器係利用兩支同心不鏽鋼管製成截面為環形之反應器,並填充Pt/BN/γ-Al2O3觸媒於環形區域。內環配置熱電偶,共30支;外環則配置12支。所有溫度訊號每秒擷取一次,並紀錄於電腦中,以了解催化燃燒器之快速溫度變化。
甲醇燃燒實驗結果顯示,在WHSV為0.147h-1,過量空氣為20%時,快速催化燃燒器可以在5分鐘之內由室溫提升到200℃,20分鐘達420℃,3小時後達682℃。
實驗結果亦顯示WHSV越大,快速燃燒器之溫度越高;過量空氣越大,快速燃燒器進出口溫度差越小;由燃燒器上端進料之燃燒效果較下端進料佳。
所有實驗之溫度分佈皆有再現性,代表實驗數據可用,且觸媒亦無退化現象。利用氣相層析儀分析燃燒器出口氣體,發現在反應初期,燃燒尚未完全,水及甲醇會吸附在燃燒器後端溫度較低之觸媒上,在反應中期,前述吸附之水及甲醇會脫附,同時造成燃燒器末端溫度有兩次升溫之現象。
It is the objective of this research to study the effect of space velocity, excess air and feeding position on transient temperature profiles of a rapid catalytic combustor (RCC) during cold start-up. The RCC was made by two concentric stainless-steel tubes, with Pt/BN/γ-Al2O3 catalyst filled in the annual area. There are 30 thermocouples in the inner side and 12 around the outer side. All the temperature signals were acquired every second in order to record the quick change of the temperature profile of RCC in the computer.
Experimental results of methanol combustion show that when WHSV is 0.147 h-1 and excess air is 20%, the temperature of RCC can be raised from room temperature to 200℃ in 5 min, 420℃ in 20min, and 682℃ in 3h. The results also show that temperature of RCC increases with increasing WHSV; increasing excess air decreases the temperature difference between the inlet and outlet of RCC; and feeding at the top of RCC has better combustion than feeding at the bottom does.
Reproducibility of temperature profile has been obtained for the combustion of methanol in RCC, indicating the experimental data is feasible and the catalyst does not deactivate. Analysis of outlet gas composition by GC reveals that at the initial stage of reaction, combustion is not completed, and water and methanol adsorb on the low-temperature catalyst at the rear part of combustor; at the middle stage of reaction, abovementioned water and methanol desorb from the catalyst. In the meantime, it results in a two-stage temperature increase at the rear part of the catalytic combustor.
誌謝 i
英文摘要 ii
中文摘要 iv
目錄v
表目錄 vii
圖目錄 viii
第一章 前言
1.1 觸媒發展 1
1.2 催化作用的定義與涵義 2
1.3 金屬氧化物觸媒 6
1.4 貴金屬觸媒 7
1.5 雙金屬觸媒 8
1.6 Pt/BN/γ-Al2O3觸媒的選用及介紹 9
1.7 甲醇燃料的特性及其應用 11
1.8 甲醇水蒸氣重組 12
1.9 本實驗室開發之催化薄膜反應器 14
1.10 研究目標 16
第二章 實驗方法與步驟
2.1 Pt/BN/γ-Al2O3觸媒 17
2.2 實驗裝置 18
2.3 實驗數據擷取 19
2.4 信號擷取裝置之規格 19
2.5 實驗操作步驟 21

第三章 結果與討論
3.1 空間速度(WHSV)對溫度分佈之影響 31
3.2 過剩空氣(Excess Air)對溫度分佈之影響 33
3.3 改變過量空氣量及WHSV對溫度分佈之影響 34
3.4 下端進料對溫度分佈之影響 35
3.5 實驗再現性 37
3.6 氣相層析儀分析結果 37
第四章 結論 62
參考文獻 64
[1] 吳榮宗,1996,《工業觸媒概論第三版》,台北:高立圖書有限公司。
[2] 胡興中,1996,《觸媒原理與應用增訂版》,新竹:國興出版社。
[3] Spivey, J. J. (1987). Complete catalytic oxidation of volatile
organics. Ind. Eng. Chem. Res., 26, 2165.
[4] Pearce, R., & Patterson, W. R. (1981). Catalysis and Chemical Process. p.
295. New York: Wiley.
[5] Li, H., Dai, W. L., Deng, J. F. (2001). Influence of calcinations and
pretreatment temperature on the activity of Ni/SiO2 amorphous catalyst in
acrylonitrile hydrogenation. Appl. Catal. A-Gen., 207, 151.
[6] Margolis, L. Y. (1973). Catal. Rev.-Sci. Eng., 8, 2241.
[7] Lee, J. H., Trimm, D., & Cant, N. W. (1999). The Catalytic Combustion of
Methane and Hydrogen Sulphide. Catal. Today, 47, 353.
[8] Farrauto, R. J., Hobson, M. C., Kennely, T., Waterman, E.M. (1992).
Catalytic Chemistry of Support Palladium for Combustion of Methane. Appl.
Catal. A, 81,227
[9] Buxbaum, R. E., & Kinney, A. B. (1997). Membrane reactor, fundamental and
commercial advantages, e.g. for methanol reforming. Newton, Mass: The
15th BCC Membrane Planning Conference.
[10] Ribeiro, R. H., Chow, M., Dalla Beta, R. A. (1994). Kinetics of the
Complete Oxidation of Methane over Supported Palladium Catalyst, J.
Catal., 146, 277.
[11] Hicks, R. F., Qi, H., Young, M. L., & Lee, R. G. (1990). Effect of
Catalyst Structure on Methane Oxidation over Palladium on Alumina, J.
Catal., 122, 280.
[12] 范雅淳,2002,《醇類在Pt/BN觸媒上之深度氧化》,國立台灣大學化學工程研究所
碩士論文。
[13] Foger, K. (1984). Dispersed Metal Catalysts. Catalysis Science and
Technology, 6, 228-305.
[14] Satterfield, C. N. (1991). Heterogeneous Catalysis in Industrial Practice
(2nd ed.). pp. 114-208, New York: McGraw-Hill.
[15] 林上傑,2006,《雙金屬觸媒Pt-Sn/BN 在丙烷脫氫之研究》,國立台灣大學化學工
程研究所碩士論文。
[16] 汪杭甫,2004,《快速催化燃燒觸媒的備製與應用》,長庚大學化工程與材料工程研
究所碩士論文。
[17] Edgar, J. H. Properties of GroupⅢ Nitrides (series No. 11). p. 9.
[18] Niedenzu, K., & Dawson, J. W. (1965). Boron-nitrogen compounds. New York:
Academic Press.
[19] Jacobsent, Claus J. H. (2001). PRIOITY COMMUNICATION-Born Nitride: A
Novel Support for Ruthenium-Based Ammonia Synthesis Catalysts. J. Catal.,
200, 1.
[20] 張泰元,1997,《VOC 在疏水性載體觸媒的深度氧化反應》,國立台灣大學化學工程
研究所碩士論文。
[21] 陳振智、楊幕震,1991,〈甲醇燃料特性及其應用〉,《能源季刊》,第21卷,第4
期,頁116-130。
[22] Alcohols and Alcohol Blends as Motor Fuels. (1986). State-of-Art (Report
Vol. Ⅱ A). The Swedish Motor Fuel Technology Co. (SDAB).
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top