|
[1]L. R. Lynd, "Overview and evaluation of fuel ethanol from cellulosic biomass: Technology, economics, the environment, and policy," Annual Review of Energy and the Environment, vol. 21, pp. 403-465, 1996. [2]d. C. M. I, "Greenhouse gas emissions and energy balances in bio-ethanol production and utilization in Brazil," Biomass and Bioenergy, vol. 14, pp. 77-81, 1996. [3]J. R. Kwiatkowski, A. J. McAloon, F. Taylor, and D. B. Johnston, "Modeling the process and costs of fuel ethanol production by the corn dry-grind process," Industrial Crops and Products, vol. 23, pp. 288-296, May 2006. [4]J. A. Quintero, M. I. Montoya, O. J. Sanchez, O. H. Giraldo, and C. A. Cardona, "Fuel ethanol production from sugarcane and corn:Comparative analysis for a Colombian case," Energy, vol. 33, pp. 385-399, 2006. [5]F. K. Kazi, J. A. Fortman, R. P. Anex, D. D. Hsu, A. Aden, A. Dutta, and G. Kothandaraman, "Techno-economic comparison of process technologies for biochemical ethanol production from corn stover," Fuel, vol. 89, pp. 20-28, 2010. [6]O. Colagrande, A. Silva, and M. D. Fum, "Recent applications of biotechnology in wine production," Biotechnol Prog, vol. 10, pp. 2-18, 1994. [7]T. W. Jeffries and Y.-S. Jin, "Metabolic engineering for improved fermentation of pentoses by yeasts," Appl Microbiol Biotechnol, vol. 63, pp. 495-509, 2004. [8]C. A. Batt, S. Caryallo, D. D. E. Jr., M. Akedo, and A. J. Sinskey, "Direct evidence for a xylose metabolic pathway in Saccharomyces cerevisiae," Biotechnol Bioeng, vol. 28, pp. 549-553, 1986. [9]M. S. Krishnan, Y. Xia, N. W. Y. Ho, and G. T. Tsao, "Fuel Ethanol Production from Lignocellulosic Sugars: Studies Using a Genetically Engineered Saccharomyces Yeast," Acs Symposium Series, vol. 666, pp. 74-92, 1997. [10]C. F. Wahlbom, R. R. C. Otero, W. H. v. Zyl, B. Hahn-Hägerdal, and L. J. Jönsson, "Molecular analysis of a Saccharomyces cerevisiae mutant with improved ability to utilize xylose shows enhanced expression of proteins involved in transport, initial xylose metabolism, and the pentose phosphate pathway," Appl Environ Microbiol, vol. 69, pp. 740-746, 2003. [11]C. F. Wahlbom, W. H. v. Zyl, L. J. Jönsson, B. Hahn-Hägerdal, and R. R. C. Otero, "Generation of the improved recombinant xylose-utilizing Saccharomyces cerevisiae TMB 3400 by random mutagenesis and physiological comparison with Pichia stipitis CBS 6054," FEMS Yeast Research, vol. 3, pp. 319-326, 2003. [12]A. Toivola, D. Yarrow, E. Bosch, and J. Dijken, "Alcoholic Fermentation of D-Xylose by Yeasts," Appl Environ Microbiol, vol. 47, pp. 1221-1223, 1984. [13]M. E. Ligthelm, B. A. Prior, and J. C. Preez, "The oxygen requirements of yeasts for the fermentation of d-xylose and d-glucose to ethanol," Appl Microbiol Biotechnol, vol. 28, pp. 63-68, 1988. [14]P. J. Slininger, R. J. Bothast, J. E. V. Cauwenberge, and C. P. Kurtzman, "Conversion of D-xylose to ethanol by the yeast Pachysolen tannophilus," Biotechnol Bioeng, vol. 24, pp. 371-384, 1982. [15]V. Bravo, F. Camacho, S. Sánchez, and E. Castro, "Influence of the concentrations of d-xylose and yeast extract on ethanol production by Pachysolen tannophilus," Fermentation and Bioengineering, vol. 79, pp. 566-571, 1995. [16]S. Sánchez, V. Bravo, E. Castro, A. J. Moya, and F. Camacho, "Comparative study of the fermentation of D-glucose/D-xylose mixtures with Pachysolen tannophilus and Candida shehatae," Bioprocess Engineering, vol. 21, pp. 525-532, 1999. [17]L. Zhao, X. Zhang, and T. Tan, "Influence of various glucose/xylose mixtures on ethanol production by Pachysolen tannophilus," Biomass and Bioenergy, vol. 32, pp. 1156-1161, 2008. [18]L. Zhao, J. Yu, X. Zhang, and T. Tan, "The ethanol tolerance of Pachysolen tannophilus in fermentation on xylose," Appied Biochemistry and Biotechnology, vol. 160, pp. 378-385, 2010. [19]S. Sánchez, V. Bravo, E. Castro, A. J. Moya, and F. Camacho, "The influence of pH and aeration rate on the fermentation of D-xylose by Candida shehatae," Enzyme and Microbial Technology, vol. 21, pp. 355-360, 1997. [20]J. C. d. Preez and J. P. v. d. Walt, "Fermentation of D-xylose to ethanol by a strain of Candida shehatae," Biotechnology Letters, vol. 5, pp. 357-362, 1983. [21]F. K. Agbogbo, G. Coward-Kelly, M. Torry-Smith, K. Wenger, and T. W. Jeffries, "The Effect of Initial Cell Concentration on Xylose Fermentation by Pichia stipitis," Appl Biochem Biotechnol, vol. 136-140, pp. 653-662, 2007. [22]F. K. Agbogbo, G. Coward-Kelly, M. Torry-Smith, and K. Wenger, "Fermentation of glucose/xylose mixtures using Pichia stipitis," Process Biochemistry, vol. 41, pp. 2333-2336, 2006. [23]C. F. Huang, T. H. Lin, G. L. Guo, and W. S. Hwang, "Enhanced ethanol production by fermentation of rice straw hydrolysate without detoxification using a newly adapted strain of Pichia stipitis," Bioresour Technol, vol. 100, pp. 3914-3920, 2009. [24]J. P. Delgenes, R. Moletta, and J. M. Navarro, "The effect of aeration on D-xylose fermentation by Pachysolen tannophilus, Pichia stipitis, Kluyveromyces marxianus and Candida shehatae," Biotechnology Letters, vol. 8, pp. 897-900, 1986. [25]S. Sánchez, V. Bravo, E. Castro, A. J. Moya, and F. Camacho, "The fermentation of mixtures of D-glucose and D-xylose by Candida shehatae, Pichia stipitis or Pachysolen tannophilus to produce ethanol," Chemical Technology and Biotechnology, vol. 77, pp. 641-648, 2002. [26]T. Back, D. Fogel, and Z. Michalewicz, "Handbook of evoluatary computation," 1997. [27]R. Storn and K. Price, "Minimizing the real functions of the ICEC'96 contest by differential evolution," pp. 842-844, 1996. [28]J. P. Chiou and F. S. Wang, "A hybrid method of differential evolution with application to optimal control problems of a bioprocess system," IEEE, pp. 627-632, 1998. [29]J. V. Dijken and W. A. Scheffers, "Method for producing ethanol from xylose-containing substance," Applied Sciences, 1987. [30]K. Skoog and B. Hahn-Hagerdal, "Effect of Oxygenation on Xylose Fermentation by Pichia stipitis," Appl Environ Microbiol, vol. 56, pp. 3389-3394, 1990. [31]H. Jørgensen and J. B. Kristensen, "Enzymatic conversion of lignocellulose into fermentable sugars: challenges and opportunities," Biofuels, Bioproducts and Biorefining, vol. 1, pp. 119-134, 2007. [32]W. H. Huang and F. S. Wang, "Kinetic modeling of batch fermentation for mixed-sugar to ethanol production," Journal of the Taiwan Institute of Chemical Engineers, vol. 41, pp. 434-439, 2010. [33]J. F. Andrews, "A Mathematical Model for the Continuous Culture of Microorganisms Utilizing Inhibitory Substrates," Biotechnol Bioeng, vol. 10, pp. 707-723, 1968. [34]M. L. Chen and F. S. Wang, "Optimization of a fed-Batch simultaneous saccharification and cofermentation process from lignocellulose to ethanol," Industrial & Engineering Chemistry Research, vol. 49, pp. 5775-5785, 2010. [35]F. S. Wang and J. W. Sheu, "Multiobjective parameter estimation problems of fermentation processes using a high ethanol tolerance yeast," Chemical Engineering Science, vol. 55, pp. 3685-3695, 1998. [36]F. S. Wang, T. L. Su, and H. J. Jang, "Hybrid differential evolution for problems of kinetic parameter estimation and dynamic optimization of an ethanol fermentation process," Industrial & Engineering Chemistry Research, vol. 40, pp. 2876-2885, 2001. [37]Y. F. Chen and F. S. Wang, "Crisp and fuzzy optimization of a fed-batch fermentation for ethanol production," Industrial & Engineering Chemistry Research, vol. 42, pp. 6843-6850, 2003.
|