跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.81) 您好!臺灣時間:2025/10/04 10:14
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:張銘哲
研究生(外文):Ming - Che Chang
論文名稱:白噪聲空間上之鞅的研究
論文名稱(外文):Martingale on White Noise Space
指導教授:李育嘉李育嘉引用關係
指導教授(外文):Yuh - Jia Lee
學位類別:碩士
校院名稱:國立高雄大學
系所名稱:應用數學系碩士班
學門:數學及統計學門
學類:數學學類
論文種類:學術論文
論文出版年:2008
畢業學年度:96
語文別:英文
論文頁數:18
中文關鍵詞:白噪音
外文關鍵詞:White Noise
相關次數:
  • 被引用被引用:0
  • 點閱點閱:206
  • 評分評分:
  • 下載下載:13
  • 收藏至我的研究室書目清單書目收藏:0
在這篇論文中, 我們建構 martingale 在白噪音空間上. 如果
$a,\,b\in\mathbb{C}$ 且 $a^2+b^2=0$, 然後我們可得 對
$\calF_{t}=\{B(s)~; ~0\leq s\leq t\}$ 而言,
$g_{ab}(\varphi\circ\theta_{t})(x)$ 是 martingale . 其中 $g_{ab}$ 是
Fourier-Gauss transforms, 其定義為
$g_{ab}\varphi(x)=\int_{S^{*}}\varphi(ay+bx)\mu(dy)$. 令
$\theta_{t}$ 是一個算子, 其定義為對任意 $x\in L^{2}(\r)$
$$\theta_{t}x(s)=1_{(-\infty,t]}(s)x(s).$$
~~令 $\{ ~e_{j}:1\leq j\leq n \}$ 是一組正交規範集存在於
$L^{2}(\r^{1})$ , 而且 ${\calF}_{n} =$$\sigma$ \{$(x,e_{j})$ :
$1\leq j\leq n$\} . 如果 $P_{n}$ 為 $L^{2}(\r^{1})$ 映成至由
$\{~e_{j}: 1\leq j \leq n \}$ 所生成的空間之正交投影.
我們可得對$\calF_{n}$而言, $g_{ab}(\varphi\circ P_{n})$ 是
martingale , 若且唯若 $a^{2}+b^{2}=0$.
此外, 我們可以藉由 martingale 在 Test
函數上的觀念推廣到廣義函數上. 最後在應用方面我們給一些例子來驗證.
The main goal of this paper is to construct martingales on white
noise space. It is shown that, if $a,\,b\in\mathbb{C}$ such that
$a^2+b^2=0$, then $g_{ab}(\varphi\circ\theta_{t})(x)$ is a
martingale with respect to the filtration $\calF_{t}$, where
$\calF_{t}$ is the Borel field generated by $\{B(s)~; ~0\leq s\leq
t\}$,
$g_{ab}$ the Fourier-Gauss
transforms defined by
$g_{ab}\varphi(x)=\int_{S^{*}}\varphi(ay+bx)\mu(dy)$, for any entire
function $\varphi$ of exponential growth of order two, and
$\theta_{t}$ is an operator defined by
$$\theta_{t}x(s)=1_{(-\infty,t]}(s)x(s).$$
for all $x\in L^{2}(\r)$. Let $\{ ~e_{j}:1\leq j\leq n \}$ be complete orthonormal set
of
$L^{2}(\r^{1})$ , and ${\calF}_{n} =$$\sigma$ \{$(x,e_{j})$ : $1\leq
j\leq n$\} ($(x,e_{j})=\int_{\r}e_{j}(t)dB(t)$) and $P_{n}$ the
orthogonal projection of $L^{2}(\r^{1})$ onto the space spanned by
$\{~e_{j}: 1\leq j \leq n \}$. It is shown that $g_{ab}(\varphi\circ
P_{n})$ is martingale with respect to $\calF_{n}$, if and only if
$a^{2}+b^{2}=0$. Further, we extend the concept of martingale to
generalized white noise functions. As applications, we give some
examples for verifying our theorem .
1.Introduction......................4
2.Preliminaries.....................5
3.Main Results......................9
4.Generalized Martingale...........12
5.Example...........................13
\bibitem{Kre} Erwin Kreyszig, \emph{Introductory Functional Analysis With
Applications} (1989), John Wiley and Sons.
\bibitem{Kuo75}H.-H. Kuo, \emph{Gaussian Measure in Banach Space}, Lecture
Notes in Math. Vol. 463 (1975), Springer-Verlag.
\bibitem{Kuo96}H.-H. Kuo, \emph{White Noise Distribution Theory} (1996), CRC
press.
\bibitem{Kuo05}H.-H. Kuo, \emph{Introduction to Stochastic Integration} (2005), Springer.
\bibitem{Gel}I.M.Gelfand and N.Ya.Vilenkin, \emph{Generalized Functions},Vol.4 (1964), Academic Press.
\bibitem{Con}John B.Conway, \emph{A Course in Functional
Analysis} (1989), Springer-Verlag.
\bibitem{Chu}K.L. Chung, \emph{A Course in Probability Theory} (2001), Academic Press.
\bibitem{Kun}Knut Aase, Bernt Oksendal, Nicolas Privault , Jan Uboe , White Noise
Generalizations of the Clark-Haussmann-Ocone Theorem with
Application to Mathematical Finance (2000) $465 - 496$,
Springer-Verlag.
\bibitem{Lee91}Y.-J. Lee, Analytic Version of Test Functionals, Fourier Transform,
and a Characterization of Measures in White Noise Calculus, J.
Funct. Anal. 100 (1991) $359-380$, Academic Press.
\bibitem{Lee95}Y.-J. Lee, Integral Representation of
Second Quantization and Its Application to White Noise Analysis, J.
Func. Anal. 2 (1995) $253 - 276$, Academic Press.
\bibitem{Lee05}Y.-J. Lee, Y.-C. Lin, Conditional Expectation of White
Noise Functionals, master thesis, National University of Kaohsiung
(2006) $1 - 15$.
\bibitem{Huang}Y.-J. Lee,H.-C. Huang, Conditional expectation of
Generalized Wiener Functionals, Journal of National Kaohiung
University of Applied Sciences Special Issue in Celebration of 40th
Anniversary of National Kaohsiung University of Applied Sciences
(2005) $73 - 89$.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top