跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.168) 您好!臺灣時間:2025/09/05 08:43
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:官紫涵
研究生(外文):Tzu-han Kuan
論文名稱:Faujasite沸石薄膜於電漿系統下之製備及特性分析
論文名稱(外文):The Preparation and Their Properties of Faujasite Zeolite Film Deposited under Plasma Jet System
指導教授:林炯芳
指導教授(外文):Chiung-fang Lin
學位類別:碩士
校院名稱:義守大學
系所名稱:生物技術與化學工程研究所碩士班
學門:生命科學學門
學類:生物科技學類
論文種類:學術論文
論文出版年:2007
畢業學年度:96
語文別:中文
論文頁數:117
中文關鍵詞:FAU沸石薄膜電漿製備雙層膜
外文關鍵詞:Double layerAntibioticCalcinationPlasmaFAU zeolite film
相關次數:
  • 被引用被引用:1
  • 點閱點閱:784
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
一般沸石膜之製備方法,如水熱法、氣相轉化法、二次生長法等,皆已被廣泛使用,其製備過程簡單,但缺點是製備時間過長、膜厚不易控制等。且由於沸石膜在合成過程需加入模板分子,在完成後要以?燒程序去除,但在加以?燒的同時則容易造成膜表面龜裂。
本實驗以clear solution法製備FAU型沸石,利用已成核之沸石結晶結構,以低溫常壓電漿系統鍍膜,藉由超音波震盪器使合成沸石合成液霧化,利用氬氣將其帶入腔體內進行電漿化學反應後沉積於基材上,藉由製程參數如氣體、流量、時間等參數控制等來找尋較佳之薄膜品質後,再以FT-IR、XRD、SEM、TEM、NMR、AFM進行檢測。
從所沉積薄膜可發現,電漿製備即可沉積一連續性薄膜,且不需經由通氧步驟,單以空氣即可達到?燒之效果;另與水熱法同時經高溫爐?燒測試後相比較,其膜表面亦具有較高的耐熱性,且表面並未因溫度提升而造成崩裂等情形;甚至若以此法作為晶種層來進行二次生長法亦可輔助水熱法之長成。而在應用上,以經銀離子交換後之沸石懸浮液做電漿沉積,此一沸石薄膜亦相同具有抗菌之效果。
The common method to prepare zeolite membrane, such as hydrothermal method, vapor-phase transport, and secondary growth method had been widely used, but the disadvantage in the proceeding processes is too long time, the membrane thick also not easy to control on atmospheric pressure. In addition, the zeolite membrane must add the organic template in the synthesis process, film surface crannied easily after calcined at high temperature. Therefore, a new process can resolve these problems is meaningful.
This study focused on the preparation and their properties of FAU zeolite film deposited under plasma jet system. In the synthetic processes, firstly, uses the clear solution method to crystallization nano FAU zeolite particle, and then via low temperature atmospheric plasma jet system deposited FAU zeolite film on the silcon wafer. The suspensed zeolite solution was vaporized by ultrasonic oscillator, and into plasma reaction quartz tube by carrier gas Ar. Investigated the effects of different manufacturing parameters, such as gas flow, AC power, and processing time, on the different of surface morphology, the chemical composition and their properties by the FT-IR, XRD, SEM, TEM, NMR, AFM.
The results showed that the FAU zeolite film deposited under low temperature atmospheric plasma jet system is success, and also remove the most part of template needn’t the oxygen step through. Compare with the process by hydrothermal method, the film surface also had higher thermal resistance, and the surface didn''t cause to cranny. It also could be a seed layer to build up the hydrothermal method deposition. And on the application, after the silver ion exchange, the FAU zeolite film under plasma jet system still maintain effectively antibiotic ability.
摘要 I
ABSTRACT II
誌謝 Ⅲ
總目錄 IV
圖目錄 VII
表目錄 XI
第一章 緒論 1
1.1 前言 1
1.2 沸石 1
1.3 FAU 沸石簡介 3
1.4 沸石膜 5
1.5 沸石膜之製備 6
1.6 研究動機與目的 10
第二章 文獻回顧 12
2.1 沸石膜之成長 12
2.2 沸石膜之製備 13
2.2-1 水熱合成(Hydrothermal) 13
2.2-2 氣相轉化法(Vapor-phase Transport) 14
2.2-3 二次生長(Secondary Growth) 15
2.2-4 電漿製備 16
2.3 電漿 18
2.4 電漿基本原理及特性 19
2.5 電漿中的反應 22
2.6 化學氣相沈積(Chemical Vapor Deposition) 23
2.7 電漿輔助化學氣相沈積 24
2.8 電漿鍍膜技術應用 26
第三章 實驗步驟 28
3.1 藥品 28
3.2樣品合成 29
3.3鍍膜製程 31
3.3-1 試片製備與清洗 31
3.4離子交換 34
3.4-1 NH4+離子交換(NH4+ FORM) 34
3.5 抗菌實驗 36
3.6 使用儀器設備 37
第四章 結果與討論 46
4.1 奈米級FAU沸石特性分析 46
4.2 電漿沉積沸石薄膜性質分析 50
4.2-1合成參數之選定 50
4.2-1A 粒徑儀分析 50
4.2-1B 傅立葉轉換紅外光光譜儀(FT-IR)分析 51
4.2-1C X光繞射儀(XRD)分析 52
4.2-2 電漿參數之設定 54
4.2-2A 傅立葉轉換紅外光光譜儀(FT-IR)分析 54
4.2-2B X光繞射儀(XRD)分析 58
4.2-2C 穿透式電子顯微鏡(TEM)分析 59
4.2-2D 核磁共振儀(NMR)分析 61
4.2-2E 掃描式電子顯微鏡(SEM)分析 67
4.2-2F 原子力顯微鏡(AFM)分析 71
4.3電漿輔助水熱法沉積雙層薄膜 72
4.3A 傅立葉轉換紅外光光譜儀(FT-IR)分析 73
4.3B X光繞射儀(XRD)分析 74
4.3C 掃描式電子顯微鏡(SEM)分析 75
4.3D 原子力顯微鏡(AFM) 77
4.4 耐熱性實驗 78
4.4A 傅立葉轉換紅外光光譜儀(FT-IR)分析 78
4.4B X光繞射儀(XRD)分析 80
4.4C 掃描式電子顯微鏡(SEM)分析 82
4.4D 原子力顯微鏡(AFM)分析 86
4.5抗菌實驗 88
4.5A X光繞射儀(XRD)分析 89
第五章 結論 92
參考文獻 93
[1] T.C. Bowen1, R.D. Noble, J.L. Falconer, “Fundamentals and applications of pervaporation through zeolite membranes”, Journal of Membrane Science, vol.245, pp.1-33, 2004.
[2] D.W. Breck, Zeolite Molecular Sieves: Structure, Chemistry, and Use”, Wiley&Sons, New York, 1984.
[3] 吳榮宗,“工業觸媒概論”,國興出版社,1989.
[4] A. Jonquieres, R. Clement, P. Lochon, J. Neel, M. Dresch, “Industrial state-of-the-art of pervaporation and vapour permeation in the western countries”, J. Membr. Sci. vol.206, pp.87-117, 2002.
[5] N. Wynn, “Pervaporation comes of age”, Chem. Eng. Prog. vol.97, pp.66-72, October 2001.
[6] G. Krishnaiah, C. Wildemuth, C. Paulaha, X. Zhao, L. White, “Commercial trials of a pervaporation process to make low sulfur gasoline, in: Proceedings of the North American Membrane Society”
Honolulu, Hawaii, pp.99, July, 2004.
[7] H. van Bekkum, E.R. Geus, H.W. Kouwenhoven, “Supported zeolite
systems and applications”, Stud. Surf. Sci. Catal. vol.85, pp.509-542, 1994.
[8] E. Okumus, T. Gurkan, L. Yilmaz, “Development of a mixed-matrix
membrane for pervaporation”, Sep. Sci. Tech. vol.29, pp.2451-2473, 1994.
[9] A. Jonquieres, A. Fane, “Filled and unfilled composite PDMS
membranes for the recovery of butanols from dilute aqueous solutions: influence of alcohol polarity”, J. Membr. Sci. vol.125, pp.245-255, 1997.
[10] X. Chen, Z.H. Ping, Y.C. Long, “Separation properties of
Alcohol-water mixture through silicalite-I-filled silicone rubber
membranes by pervaporation”, J. Appl. Polym. Sci. vol.67, pp.629-636, 1998.
[11] H. Yang, Q.T. Nguyen, Z. Ping, Y. Long, Y. Hirata, “Desorption and pervaporation properties of zeolite-filled poly(dimethylsiloxane)
membranes”, Mater. Res. Innov. vol.5, pp.101-106, November 2001.
[12] J. Coronas, J. Santamaria, “Separations using zeolite membranes”,
Sep. Purif. Meth. vol.28, pp.127-177, 1999.
[13] T. Bein, “Synthesis and applications of molecular sieve layers and
Membranes”, Chem. Mater. vol.8, pp.1636-1653, 1996.
[14] J. Caro, M. Noack, P. Kolsch, R. Schafer, “Zeolite membranes – state of their development and perspective”, Microporous and Mesoporous Materials, vol.38, pp.3-24, July 2000.
[15] A.S. Chiang, K.J. Chao, “Membranes and films of zeolite and
zeolite-like materials”, J. Phys. Chem. Solids, vol.62, pp.1899-1910, September 2001.
[16] M.J. Exter, J.C. Jansen, J.M. van de Graaf, F. Kapteijn, J.A.
Moulijn, H. van Bekkum, “Zeolite-based membranes preparation,
performance and prospects”, Recent Adv. New Horizons Zeolite
Science Technology , Vol.102, pp.413, 1996.
[17] Y.S. Lin, I. Kumakiri, B.N. Nair, H. Alsyouri, “Microporous inorganic membranes”, Sep. Purif. Meth., vol.31, pp.229-379, 2002.
[18] M. Matsukata, E. Kikuchi, “Zeolitic membranes: synthesis, properties, and prospects”, Bulletin Chem. Soc. Jpn., vol.70, pp.2341-2356, January 1997.
[19] F. Mizukami, “Application of zeolite membranes, films and coatings”, Stud. Surf. Sci. Catal., vol.125, pp.1-12, 1999.
[20] A. Tavolaro, E. Drioli, “Zeolite membranes”, Adv. Mater., vol.11, pp.975-996, May 1999.
[21] M. Tsapatsis, G.R. Gavalas, “Synthesis of porous inorganic membranes”, MRS Bull., vol.24, pp.30-35, March 1999.
[22] H. Suzuki, “Composite membrane having a surface layer of an ultrathin film of cage-shaped zeolite and processes for production thereof”, U.S. Patent 4,699,892, October 1987.
[23] J. Hedlund, J. Sterte, M. Anthonis, A.-J. Bons, B. Carstensen, N.
Corcoran, D. Cox, H. Deckman, W.D. Gijnst, F. Lai, J. McHenry, W. Mortier, J. Reinoso, J. Peeters, “High-flux MFI Membranes”, Microporous and Mesoporous Materials, vol.52, pp.179-189 ,2002.
[24] T.C. Bowen, H. Kalipcilar, J.L. Falconer, R.D. Noble, “Pervaporation of organic/water mixtures through B-ZSM-5 zeolite membranes on monolith supports”, J. Membr. Sci., vol.215, pp.235-247, 2003.
[25] M. Noack, P. Kolsch, J. Caro, M. Schneider, P. Toussaint, I. Sieber,
“MFI membranes of different Si/Al ratios for pervaporation and
steam permeation”, Microporous and Mesoporous Materials, vol.35, pp.253-265, 2000.
[26] T.Q. Gardner, A.I. Flores, R.D. Noble, J.L. Falconer, “Transient
measurements of adsorption and diffusion in H-ZSM-5 membranes”, AIChE J. vol.48, pp.1155-1167, 2002.
[27] K. Aoki, K. Kusakabe, S. Morooka, “Gas permeation properties of
A-type zeolite membrane formed on porous substrate by hydrothermal synthesis”, J. Membr. Sci., vol.141, pp.197-205, 1998.
[28] J. Hedlund, B. Schoeman, J. Sterte, “Ultrathin oriented zeolite LTA
films”, Chem. Comm. vol.13, pp.1193-1194, 1997.
[29] A. Navajas, R. Mallada, C. T´ellez, J. Coronas, M. Men´endez, J.
Santamar´ıa, “Preparation of mordenite membranes for pervaporation of water-ethanol mixtures”, Desalination, vol.148, pp.25-29, 2002.
[30] S. Yamazaki, K. Tsutsumi, “Adsorption characteristics of synthesized mordenite membranes”, Adsorption, vol.3, pp.165-171, 1997.
[31] V. Nikolakis, G. Xomeritakis1, A. Abibi, M. Dickson, M. Tsapatsis, D. G. Vlachos, “Growh of a Faujasite zeolite membrane and its application in the separation of sturated/unsaturated hydrocarbon mixtures”, Journal of Membrane Science, vol.184, pp. 209-219, 2001.
[32] K. Kusakabe, T. Kuroda, K. Uchino, Y. Hasegawa, S. Morooka,
“Gas permeation properties of ion-exchanged faujasite-type zeolite
membranes”, AIChE J., vol.45, pp.1220-1226, 1999.
[33] S. Li, V.A. Tuan, J.L. Falconer, R.D. Noble, “X-type zeolite membranes: preparation, characterization, and pervaporation performance”, Microporous and Mesoporous Materials, vol.53, pp.59-70, 2002.
[34] H. Kalipcilar, T.C. Bowen, R.D. Noble, J.L. Falconer, “Synthesis andseparation performance of SSZ-13 zeolite membranes on tubular
supports”, Chem. Mater., vol.14, pp.3458-3464, 2002.
[35] V.A. Tuan, S.G. Li, R.D. Noble, J.L. Falconer, “Preparation and
pervaporation properties of a MEL-type zeolite membrane”, Chem.
Comm., vol.6, pp.583-584, 2001.
[36] Y.H. Chiou, T.G. Tsai, S.L. Sung, H.C. Shih, C.N. Wu, K.J. Chao,
“Synthesis and characterization of zeolite (MFI) membrane on anodic alumina”, J. Chem. Soc., Faraday Trans. vol.92, pp.1061-1066, 1996.
[37] N. Nishiyama, K. Ueyama, M. Matsukata, “Synthesis of FER membrane on an alumina support and its separation properties”, Stud. Surf. Sci. Catal., vol.105, pp.2195-2202, 1997.
[38] V.A. Tuan, S.G. Li, J.L. Falconer, R.D. Noble, “In situ crystallization of beta zeolite membranes and their permeation and separation properties”, Chem. Mater., vol.14, pp.489-492, 2002.
[39] N. Nishiyama, K. Ueyama, M. Matsukata, “Synthesis of defect-free
zeolite-alumina composite membranes by a vapor-phase transport
method”, Microporous and Mesoporous Materials, vol.7, pp.299-308, 1996.
[40] L. Washmon-Kriel, K.J. Balkus, “Preparation and characterization
of oriented MAPO-39 membranes”, Microporous and Mesoporous Materials, vol.38, pp.107-121, 2001.
[41] R. Ravishankar, C.E.A. Kirschhock, E.J.P. Feijen, P.J. Grobet, P. Vanoppen, F.C. DeSchryver, G. Miehe, H. Fuess, B.J. Scheoman,
”Characterization of naonsized material extracted from clear suspensions for MFI zeolite synthesis” , J.PhysChem.B, pp.4960-4964, vol.103, 1999.
[42] Z.P. Lai, G. Bonilla, I. Diaz, J.G. Nery, K. Sujaoti, M.A. Amat, E.
Kokkoli, O. Terasaki, R.W. Thompson, M. Tsapatsis, D.G. Vlachos,
“Microstructural optimization of a zeolite membrane for organic
vapor separation”, Science, vol.300, pp.456-460, 2002.
[43] S. Li, V.A. Tuan, J.L. Falconer , R.D. Noble, ” X-type zeolite membranes: preparation, characterization, and pervaporation performance”, Microporous and Mesoporous Materials, vol.53, pp.59-70, 2002.
[44] K. Morawetz, J. Reiche, H. Kamusewitz, H. Kosmella, R. Ries,
M. Noack, L. Brehmer, “ Zeolite films prepared via the Langmuir–Blodgett technique”, Colloids and Surfaces A: Physicochemical and Engineering Aspects, vol.198-200, pp.409-414, February 2002.
[45] S.M. Oh, H.H. Kim, H. Einaga, A. Ogata, S. Futamura, D.W. Park, “Zeolite-combined plasma reactor for decomposition of toluene”, Thin Solid Films, vol.506-507, pp.418-422, May 2006.
[46] K. Maruyama, I. Tsumagari, M. Kanezawa, Y. Gunji, “Preparation of ZnO films from Zn2+ aquesous mist using atmospheric pressure glow plasma”, Journal of materials science letters, vol.20, pp.491-484,2001.
[47] Y. Suzaki, S. Ejima, T. Shikama, S. Azuma, O. Tanaka, T. Kajitani, H. Koinuma, “Deposition of ZnO film using an open-air cold plasma generator”, Thin Solid Films, vol.506-507, pp.155-158, 2006.
[48] T. Bein, “Synthesis and application of molecular-sieve layers and membranes”, Chem. Mater., vol.8,pp.1636-1653, 1996.
[49] J.H. Koegler, A. Aragfat., H.V. Bekkum, J.C. Jansen, "Synthesis of films of oriented silicalite-1 crystals using microwave heating," Stud. Surf. Sci. Catal., vol.105, pp.2163-2170, 1997.
[50] W. Xu, J. Dong, J. Li, W. Li, F. Wu, “A novel method for the preparation of zeolite ZSM-5” ,Chem. Soc., Chem.Commun., pp.755-756, 1990.
[51] M. Matsukata, N. Nishiyama, K. Ueyama, “Zeolite membrane synthesized on a porous alumina support”, Chem. Soc. Chem. Commun., pp.339-340,1994.
[52] J. Dong, T. Dou, X. Zhao, L. Gao, “Synthesis of membranes of zeolites and ZSM-5 and ZSM-35 by the vapor phase method”, Chem. Soc., Chem. Commun., pp.1056-1058,1992.
[53] M.C. Lovallo and M. Taspatsis, “Preparation of an asymmetric zeolite L film”, Chemical Materials vol.8, pp.1579-1583, 1996.
[54] S. Mintova, V. Valtchev, V. Engstrom, B.J. Schoeman, J. Sterte,“Growth of silicate-1 films on gold substrates ”, Microporous and Mesoporous Materials, vol.11, No. 3, pp.149-160, September 1997.
[55] Q. Li, D. Creaser , J. Sterte,”The nucleation period for TPA-silicalite-1 crystallizationdetermined by a two-stage varying-temperature synthesis.”, Microporous and Mesoporous Materials vol.31, pp.141-150, 1999.
[56] J. Hedlund, S. Mintova , J. Sterte, “Controlling the preferred orientation in silicalite-1 films synthesized by seeding”, Microporous and Mesoporous Materials, vol.28, pp.185-194, 1999.
[57] Q. Li, J. Hedlund, J. Sterte, D. Creaser, A.J. Bons, “Synthesis and characterization of zoned MFI films by seeded growth”, Microporous and Mesoporous Materials vol.56, pp.291-302, 2002.
[58] T.V. Yagodovskaya, V.V. Lunin, “Surface modification of cements and zeolite catalysts by glow discharge”, Zh. Fiz. Khim., vol.71, pp.775-786, 1997.
[59] S. Yoon, A.G. Panov, R.G. Tonkyn, A.C. Ebeling, S.E. Barlow, M.L. Balmer, “An examination of the role of plasma treatment for lean NOx reduction over sodium zeolite Y and gamma alumina Part 1. Plasma assisted NOx reduction over NaY and Al2O3”, Catalysis Today, vol.72, pp.243-250, 2000.
[60]王瑞誠,二氧化矽與聚乙烯鍍膜之低溫常壓電漿噴流系統之開發及製程研究,義守大學,2006年
[61]賴永隆,以自製低溫常壓電漿系統製備奈米二氧化鈦光觸媒薄膜及氧化鋅薄膜光學特性之研究,義守大學,2007年
[62]高正雄,超LSI時代-電漿化學,復漢出版社,1984年
[63]莊允中,電漿技術在半導體製程上之應用與市場分析,金工產業透析,2000年
[64]賴耿陽編譯,電漿工學的基礎,復文書局,2002年
[65] V. Singh, J.C. Jiang, E.I. Meletis, “Cr-diamondlike carbon nanocomposite films : synthesis, characterization and properties”, Thin Solid Films, vol.489, pp.150-158, 2005.
[66] V.A. Kolesnikov, M.G. Tedoradze, A.A. Nekrasov, A.D. Grishina. “Corona inhibition by photochemical dissolution of Al films by polymeric composition”, Journal of Photochemistry and Photobiology A: Chemistry, vol.138, pp.23-27, 2001.
[67]吳耀庭、黃曉鳳、溫俊祥,電漿表面處理在生醫材料之應用,工業材料雜誌,第212期,2004年8月
[68]張淑真,從奈米級到微米級一系列Faujasite沸石之合成與修飾,義守大學,2004年
[69] M.R. Garza, M.T. Olgu?n, I.G. Sosa, D. Alc?ntara, G.R. Fuentes, “Silver supported on natural Mexican zeolite as an antibacterial material”, Microporous and Mesoporous Materials vol.39, pp.431-444, 2000.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top