跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.81) 您好!臺灣時間:2025/10/07 06:34
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:林炳南
研究生(外文):Biing-Nan Lin
論文名稱:A.絕緣的Pr1+xBa2-xCu3O7-y系統之物理性質及其Pr,Cu氧化態研究;B.Ca1-xSrxRuO3流動鐵磁系統之物理性質及XANES研究
論文名稱(外文):A.The studies of physical properties and oxidation state of Pr and Cu for the insulating Pr1+xBa2-xCu3O7-y system; B. Ca1-xSrxRuO3 Itinerant Ferromagnetic System
指導教授:古煥球
指導教授(外文):Huan-chiu Ku
學位類別:博士
校院名稱:國立清華大學
系所名稱:物理學系
學門:自然科學學門
學類:物理學類
論文種類:學術論文
論文出版年:2003
畢業學年度:91
語文別:英文
論文頁數:92
中文關鍵詞:鐠鋇銅氧系統自旋玻璃X光吸收光譜流動鐵磁金屬鈣鍶釕氧系統
外文關鍵詞:PrBa2Cu3O7spin glassXANESitinerant ferromagnetic metalCa1-xSrxRuO3
相關次數:
  • 被引用被引用:0
  • 點閱點閱:182
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
A. Pr1+xBa2-xCu3O7-y system
除了統整以前所作相關的實驗資料外, 本實驗測量了絕緣體PrBa2Cu3O7-y (y = 0.05, 0.11, 0.21, 0.26, 0.57, 0.62, 0.79) 和Pr1+xBa2-xCu3O7-y (x = 0.2, 0.4, 0.6, 0.8, 1.0) Pr L3-edge 和 Cu K-edge XANES X光邊緣吸收光譜及磁性資料. PrBa2Cu3O7-y的Pr反磁序溫度TN(Pr)隨著氧含量減少而降低由 18.5 K (氧含量7 - y = 6.95) 線性的下降到11 K (氧含量7 - y = 6.21). Pr L3-edge (2p - 5d transition) 的X光邊緣吸收光譜反映出Pr的價數由3.17 (7 - y = 6.95) 下降到3.01 (7 - y = 6.21). 從Cu K-edge (1s - 4p transition) 的X光邊緣吸收光譜得到吸收邊緣能量由8982.2 eV (7 - y = 6.95) 平移到8980.2 eV (7 - y = 6.21). 由Cu K-edge X光邊緣吸收光譜可以看出隨著電洞的參雜(氧含量漸漸增加)其峰值有系統的變化, 可知道和氧含量有密切的關係。論文最後, 討論由Pr和銅的價數討論其數據與TN(Pr), 結構及Pr-O distance的關聯。
B. Ca1-xSrxRuO3 system
在Ca1-xSrxRuO3 系統中, 做了Ru L3-edge and O K-edge X光邊緣吸收光譜, 粉末X-ray繞射分析及磁性的量測。在這系統中, CaRuO3 是一個交換作用增強 (exchange-enhanced) 的順磁金屬, SrRuO3 是一個流動電子構成的鐵磁金屬(TC ~ 160 K). 從X光邊緣吸收光譜XANES and X-ray繞射分析可以看出此系統兩點特性: (1).所有樣本都是化學計量上為113 的樣本且Ru為4+ (大部份的4d電子處在t2g軌道); (2).在CaRuO3中(space group Pbnm; 與SrRuO3相同)有著較大的RuO6晶格不對稱性, 不論是傾斜程度或是扭曲程度。在Ca1-xSrxRuO3系統中的流動鐵磁範圍內, 在磁化強度對磁場的關係圖中觀測到一個小又不能飽和的磁矩─其異常的、與磁場相關的行為。同時在實驗中, 可從初磁化曲線和磁滯曲線看到在x £ 0.2都有鐵磁自旋變動.在磁化率隨著時間變化的圖形中, 看到在鐵磁自旋變動區域內的樣本有著異常的特性。CaRuO3 不單純是一個順磁金屬, 它的鐵磁自旋變動(ferromagnetic spin fluctuation)也被觀察到。在Ru L3-edge X光邊緣吸收光譜資料看到隨Sr的摻入而增加的吸收峰強度顯示出在Fermi level附近有較高的狀態密度(density of state)以及較小的晶格扭曲變形. 論文最後, 討論結構扭曲, 流動鐵磁, 鐵磁自旋變動和能帶結構之間的關係。
A.Pr1+xBa2-xCu3O7-y system
The Pr L3-edge and Cu K-edge X-ray absorption near-edge strucutre (XANES) data and magnetic data for the insulating PrBa2Cu3O7-y (y = 0.05, 0.11, 0.21, 0.26, 0.57, 0.62, 0.79) and Pr1+xBa2-xCu3O7-y (x = 0.2, 0.4, 0.6, 0.8, 1.0) samples are reported. The anomalous antiferromagnetic Néel temperature TN decreases monotonically from 18.5 K for oxygenated compound (y = 0.05) to 11 K for oxygen-reduced compound (y = 0.79). The Pr L3-edge (2p-5d transition) XANES data indicate that the formal Pr valence decreases from 3.17 for y = 0.05 to 3.01 for y = 0.79. The Cu K-edge (1s-4p transition) XANES data show that the threshold energy (edge inflection point) shifts from 8982.2 eV for y = 0.05 to 8980.2 eV for y = 0.79. A systematic variation was found that peak A and peak B of Cu K-edge XANES intensities increase with oxygen content (hole doping). The correlation among Pr/Cu valence, structure, Pr-O bond length, and TN(Pr) are discussed.
B.Ca1-xSrxRuO3 system
Ru L3-edge and O K-edge X-ray absorption near-edge spectra (XANES), powder X-ray Rietveld analysis and magnetic studies were performed on the Ca1-xSrxRuO3 system (0 < x < 1) and BaRuO3, where CaRuO3 is an exchange-enhanced paramagnetic metal, SrRuO3 is an itinerant ferromagnet (TC ~ 160 K) and BaRuO3 is a normal paramagnetic metal with no local moment. XANES and X-ray diffraction data indicate that all samples are very close to the stoichiometric 113 compositions with tetravalent Ru (most of the four 4d electrons in t2g bands) and stronger RuO6 octahedral distortion near the CaRuO3 region (space group Pbnm). Ferromagnetic spin fluctuation was obvious in the paramagnetic region (x < 0.2) from low temperature initial magnetization and hysteresis studies. Anomalous field-dependent behavior with small, unsaturated magnetic moment was also observed in the itinerant ferromagnetic region. Magnetic relaxation data M(t) show anomalous behavior. Ru L3-edge XANES data with larger absorption intensity with increasing Sr substitution indicates larger density of states near the Fermi level eF and smaller orthorhombic lattice distortion. The correlation among structural distortion, itinerant ferromagnetism, ferromagnetic spin fluctuation, and band structure variation will be discussed.
Content
Abstract i
Chinese abstract ii
Acknowledgement iii
Part. A The Studies of Physical Properties and Oxidation State of Pr and Cu for the Insulating Pr1+xBa2-xCu3O7-y System
1. Introduction 1
2. Experimental Details
2.1 Sample preparation 4
2.2 Experimental instruments 8
3. Results and discussions
3.1 Crystal structure of Pr1+xBa2-xCu3O7-y system 19
3.2 Transport properties of Pr1+xBa2-xCu3O7-y system 27
3.3 Anomalous high TN(Pr) of Pr1+xBa2-xCu3O7-y system 30
3.4 TN(Pr) v.s. Pr-O distance (Discussion.I) 35
3.5 Pr and average Cu valence of Pr1+xBa2-xCu3O7-y system 37
3.6 TN(Pr), Pr valence v.s. oxygen content (Discussion.II) 43
4. Conclusion 47
Part. B Magnetic and XANES Studies of Ca1-xSrxRuO3 Itinerant Ferromagnetic System
1. Introduction 48
2. Experimental Details
2.1 Sample preparation 53
2.2 Experiment procedure in magnetic time relaxation 55
3. Results and discussions
3.1 Crystal structure of Ca1-xSrxRuO3 system 56
3.2 XANES data of Ca1-xSrxRuO3 system 61
3.3 Hysteresis loop of the itinerant ferromagnetic system 64
3.4 Spin glass in CaRuO3? (M-T curve) 68
3.5 Magnetic time relaxation in CaRuO3 72
3.6 Phase diagram in Ca1-xSrxRuO3 system 78
4. Conclusion 80
References A 81
References B 85
Appendix I: Explanation 87
Appendix II: biographic information 90
References A
[1]. L. Soderholm, K. Zhang, D. G. Hinks, M. A. Beno, J. D. Jor-gensen, C. U. Segre, and I. K. Schuller, Nature (London) 328, 604 (1987).
[2]. H. C. Ku, C. C. Chen, and S. W. Hsu, Int. J. Mod. Phys. B 2, 1411 (1988).
[3]. A. Kebede, C. S. Jee, J. Schwegler, J. E. Crow, T. Mihalisin, G. H. Myer, R. E. Salomon, P. Schlottmann, M. V. Kuric, S. H. Bloom, and R. P. Guertin, Phys. Rev. B 40, 4453 (1989), and references cited therein.
[4]. W-H. Li, J. W. Lynn, S. Skanthakumar, T. W. Clinton, A. Ke-bede, C. S. Jee, J. E. Crow, and T. Mihalisin, Phys. Rev. B 40, 5300 (1989).
[5]. H. B. Radousky, J. Mater. Res. 7, 1917 (1992), and reference cited therein.
[6]. H. M. Luo, B. N. Lin, Y. H. Lin, H. C. Chiang, Y. Y. Hsu, T. I. Hsu, T. J. Lee, H. C. Ku, C. H. Lin, H.-C. I. Kao, J. B. Shi, J. C. Ho, C. H. Change, S. R. Huang, W.-H. Li, Phys. Rev. B 61, 14825 (2000) and reference cited therein.
[7]. Y. H. Lin, B. N. Lin, Y. X. Lin, Y. Y. Hsu, T. I. Hsu, and H. C. Ku, J. applied phys. 89, 7484 (2001).
[8]. H. C. Ku, Y. Y. Hsu, and B. N. Lin, J. phys. and chem. of solids 62, 1819 (2001).
[9]. H. C. Ku, B. N. Lin, Y. Y. Hsu, and Y. H. Lin, J. applied phys. 91, 7128 (2001) and reference cited therein..
[10]. J. C. Ho, P. H. Hor, R. L. Meng, C. W. Chu, and C. Y. Huang, Solid State Commun. 63, 711 (1987).
[11]. R. Fehrenbacher and T. M. Rice, Phys. Rev. Lett. 70, 3471 (1993), and references cited therein.
[12]. H. A. Blackstead, J. D. Dow, D. B. Chrisey, J. S. Horwitz, M. A. Black, P. J. McGinn, A. E. Klunzinger, and D. B. Pulling, Phys. Rev. B 54, 6122 (1996).
[13]. Z. Zou, J. Ye, K. Oka, and Y. Nishihara, Phys. Rev. Lett. 80, 1074 (1998).
[14]. K. Oka, Z. Zou, and J. Ye, Physica C 300, 200 (1998).
[15]. J. Ye, Z. Zou, A. Matsushita, K. Oka, Y. Nishihara, and T. Mat-sumoto, Phys. Rev. B 58, 619 (1998).
[16]. C. U. Segre, B. Dabrowski, D. G. Hinks, K. Zhang, J. D. Jor-gensen, M. A. Beno, and I. K. Schuller, Nature (London) 329, 227 (1987).
[17]. B. Okai, M. Kosuge, H. Nozaki, K. Takahashi, and M. Ohta, Jpn. J. Appl. Phys., Part 2 27, L41 (1988).
[18]. M. Suga, M. Hiratani, and Y. Tarutani (unpublished).
[19]. S. K. Malik, S. M. Pattalwar, C. V. Tomy, R. Prasad, N. C. Soni, and K. Adhikary, Phys. Rev. B 46, 524 (1992).
[20]. Y. T. Ren, Y. Y. Xue, Y. Y. Sun, and C. W. Chu, Physica C 213, 224 (1993).
[21]. S. K. Malik, R. Prasad, N. C. Soni, K. Adhikary, and W. B. Yelon, Physica B 223镐, 562 (1996).
[22]. T. B. Lindemer and E. D. Specht, Physica C 268, 271 (1996).
[23]. W. H. Tang and J. Gao, Physica C 315,66(1999).
[24]. H. C. Ku, H. M. Luo, Y. P. Chi, B. N. Lin, Y. Y. Hsu, T. J. Lee, J. B. Shi, and H. -C. I. Kao, J. Low Temp. Phys. 117, 885 (1999).
[25]. H. Nozaki, S. Takekawa, and Y. Ishizawa, Jpn. J. Appl. Phys., Part 2 27, L31 (1988).
[26]. K. Takita, H. Katoh, H. Akinaga, M. Nishino, T. Ishigaki, and H. Asano, Jpn. J. Appl. Phys., Part 2 27, L57 (1988).
[27]. E. A. Goodilin, N. N. Oleynikov, E. V. Antipov, R. V. Shpanchenko, G. Yu. Popov, V. G. Balakirev, and Yu. D. Tretyakov, Physica C 272,65(1996).
[28]. E. Goodilin, M. Kambara, T. Umeda, and Y. Shiohara, Physica C 289,37(1997).
[29]. E. Goodilin, M. Limonov, A. Panfilov, N. Khasanova, A. Oka, S. Tajima, and Y. Shiohara, Physica C 300, 250 (1998).
[30]. M. J. Kramer, K. W. Dennis, D. Falzgraf, R. W. McCallum, S. K. Malik, and W. B. Yelon, Phys. Rev. B 56, 5512 (1997).
[31]. U. Neukirch et al., Europhys. Lett. 5, 567 (1988).
[32]. A. P. Reyes et al., Phys. Rev. B 43, 2989 (1991).
[33]. K. Takenaka et al., Phys. Rev. B 46, 5833 (1992).
[34]. M. E. Lopez-Morales, D. Rios-Jara, J. Taguena, R. Escudero, S. La Placa, A. Bezinge, V. Y. Lee, E. M. Engler, and P. M. Grant, Phys. Rev. B 41, 6655 (1990).
[35]. E. H. Appelman, L. R. Morss, A. M. Kini, U. Geiser, A. Umezawa, G. W. Crabtree, and K. D. Carlson, Inorg. Chem. 26, 3237 (1987).
[36]. RIQAS program, Materials Data, Inc., Livermore, CA, 1996.
[37]. H. Shaked, P. M. Keane, J. C. Rodriguez, F. F. Owen, R. L. Hitterman, and J. D. Jorgensen, Crystal Structures of the High-Tc Superconducting Copper-Oxides (Elsevier Science, New York, 1994).
[38]. W. T. Hsieh, K. J. Chang, W-H. Li, K. C. Lee, J. W. Lynn, C. C. Lai, and H. C. Ku, Phys. Rev. B 49, 12 200 (1994).
[39]. H. C. Ku, H. M. Luo, Y. P. Chi, B. N. Lin, Y. Y. Hsu, C. H. Lin, and H.-C. I. Kao, Physica B (to be published).
[40]. R. K. Li, Z. Y. Chen, and Y. T. Qian, Physica C 172, 335 (1990).
[41]. R. Nagarajan, V. Pavate, and C. N. R. Rao, Solid State Commun. 84, 183 (1992).
[42]. M. Takata, T. Takayama, M. Sakata, S. Sasaki, K. Kodama, and M. Sato, Physica C 263, 340 (1996).
[43]. A. T. Boothroyd, A. Longmore, N. H. Andersen, E. Brecht, and Th. Wolf, Phys. Rev. Lett. 78, 130 (1997).
[44]. V. N. Narozhnyi, D. Eckert, K. A. Nenkov, G. Fuchs, T. G. Uvarova, and K. H. Muller, Physica C 312, 233 (1999).
[45]. H. C. Ku, Y. B. You, S. R. Sheen, Y. M. Wan, T. I. Hsu, and Y. Y. Hsu, J. Low Temp. Phys. 105, 1463 (1996).
[46]. C. C. Lai, B. S. Chiou, Y. Y. Chen, J. C. Ho, and H. C. Ku, Physica C 202, 104 (1992).
[47]. C. C. Lai, T. J. Lee, H. K. Fun, H. C. Ku, and J. C. Ho, Phys. Rev. B 50, 4092 (1994).
[48]. H. C. Ku, C. C. Lai, J. H. Shieh, J. W. Liou, C. Y. Wu, and J. C. Ho, Physica B 194-196, 213 (1994).
[49]. C. H. Chou, Y. Y. Hsu, J. H. Shieh, T. J. Lee, H. C. Ku, J. C. Ho, and D. H. Chen, Phys. Rev. B 53, 6729 (1996).
[50]. N. Rosov, J. W. Lynn, H. B. Radousky, M. Bennahmias, T. J. Goodwin, P. Klavins, and R. N. Shelton, Phys. Rev. B 47, 15256 (1993).
[51]. C. L. Yang, J. H. Shieh, Y. Y. Hsu, H. C. Ku, and J. C. Ho, Phys. Rev. B 52, 10 452 (1995).
[52]. Y. Gao, P. Pernambuco-Wise, J. E. Crow, J. O’Reilly, N. Spen-cer, H. Chen, and R. E. Salomon, Phys. Rev. B 45, 7436 (1992).
[53]. E. Alleno, C. Godart, B. Fisher, J. Genossar, L. Patlagan, and G. M. Reisner, Physica B 259, 530 (1999).
[54]. U. Staub, L. Soderholm, S. R. Wasserman, A. G. O. Conner, M. J. Kramer, B. D. Patterson, M. Shi, and M. Knapp, Phys. Rev. B 61, 1548 (2000).
References B
[1]. Y. Maeno, H. Hashimoto, K. Yoshida, S. Nishizaki, T. Fujita, J.G. Bednorz, and F. Lichtenberg, Nature(London) 372, 532 (1994).
[2]. O. Friedt, M. Braden, G. Andre, P. Adelmann, S. Nakatsuji, Y. Maeno, Phys. Rev. B 63, 174432 (2001).
[3]. S. A. Grigera, R. S. Perry, A. J. Schofield, M. Chiao, S. R. Julian, G. G. Lonzarich, S. I. Ikeda, Y. Maeno, A. J. Millis, and A. K. Mackenzie, Science 294, 329 (2001).
[4]. G. Cao, S. McCall, M. Shepard, J. E. Crow, and R. P. Guertin, Phys. Rev. B 56, 321 (1997).
[5]. K. Yoshimura, T. Imai, T. Kiyama, K. R. Thurber, A. W. Hunt, and K. Kosuge, Phys. Rev. Lett. 83, 4397 (1999).
[6]. I. Felner, I. Nowik, I. Bradaric, and M. Gospodinov, Phys. Rev. B 62, 11332 (2000).
[7]. T. He and R. J. Cava, Phys. Rev. B 63, 172403 (2001).
[8]. K. Yoshii and H. Abe, Physica B 312-313, 791 (2002).
[9]. M. S. Laad and E. Muller-Hartmann, Phys. Rev. Lett. 87, 246402 (2001).
[10]. David J. Singh, J. Appl. Phys. 79, 4818 (1996).
[11]. G. Santi and T Jarborg, J. Phys.: Condes. Matter 9, 9563 (1997).
[12]. I. I. Mazin and D. J. Singh, Phys. Rev. B 56, 2556 (1997).
[13]. Mingqiu, Xiangming Tao, and Junhui He, Physic B 307, 22 (2001).
[14]. M. V. Rama Rao, V. G. Sathe, D. Sornadurai, B. Panigraphi, and T. Shripathi, J. Phys. and Chem. of Solids 62, 797 (2001).
[15]. A. Callaghan, C.W. Moeller, and R. Ward, Inorg. Chem. 5, 1572 (1966).
[16]. J.M. Longo, P.M. Raccah, J.B. Goodenough, J. Appl. Phys. 39, 1327 (1968).
[17]. T. Kiyama, K. Yoshimura, K. Kosuge, H. Mitamura, T. Goto, J. Phys. Soc. Jpn 68, 3372 (1999).
[18]. J. S. Dodge, E. Kulatov, L. Klein, C. H. Ahn, J. W. Reiner, L, Mieville, T. H. Geballe, M. R. Beasley, A. Kapitulnik, H. Ohta, Yu. Uspenskii, and S. Halilov, Phys. Rev. B 60, R6987 (1999).
[19]. D. L. Hou, E. Y. Jiang, S. W. Ren, Z. Q. Li, and H. L. Bai, Phys. Stat. Sol. (a) 191, 597 (2002) and cited therein.
[20]. A. P. Young, “Spin glasses and random fields”, World Scientific (1998).
[21]. Toru Moriya, “Spin fluctuations in itinerant electron ferromagnetism”, Springer.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top