跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.17) 您好!臺灣時間:2025/09/03 20:10
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:吳恩佑
研究生(外文):WU,EN-YOU
論文名稱:改良型二階滑動模式控制於風扇及磁浮系統
論文名稱(外文):Modified second order sliding mode control of fan system and magnetic system
指導教授:江煥鏗
指導教授(外文):CHIANG,HUANN-KENG
口試委員:沈金鐘陳清華
口試委員(外文):SHEN, JING-CHUNGCHEN,TSING-HUA
口試日期:2016-07-15
學位類別:碩士
校院名稱:國立雲林科技大學
系所名稱:電機工程系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:中文
論文頁數:178
中文關鍵詞:風扇系統風速控制磁浮球系統高度控制滑動模式二階滑動模式
外文關鍵詞:fan systemwind speed controlmagnetic ball suspend systemheight controlsliding mod controlsecond order sliding mod control
相關次數:
  • 被引用被引用:3
  • 點閱點閱:204
  • 評分評分:
  • 下載下載:18
  • 收藏至我的研究室書目清單書目收藏:0
隨著科技的進步,除了講究精密度之外也考慮硬體成本,系統的精密定位控制及廉價的成本在工業界頗受重視。風速系統是針對建築物空調風扇耗能改善的自製實驗系統,主要目的為減少建物內空調中風扇系統的能量損耗,進而減低碳排放量,而磁浮球系統是利用電流通過線圈產生電磁力使受控體懸浮於空中,因此可避免元件之接觸摩擦受損。
風扇系統與磁浮球系統擁有非線性系統之特性,容易遭非線性系統中的不確定量干擾使系統輸出偏離預期命令或失控,因此本論文在風扇系統方面以單晶片PIC30F4011為運算核心,訊號輸出部分軟體使用SPI手法搭配硬體MCP4921進行A/D轉換再透過驅動電路進行風速控制。而磁浮球系統,則是藉由電腦軟體Matlab搭配硬體控制卡PCI-1711U進行A/D轉換,再透過驅動電路進行高度控制,最後再將本論文所設計之非線性控制器導入系統,藉此避免系統輸出偏離預期命令或失控的情況發生。
本論文非線性控制器主要以二階滑動模式控制器為主,其動機為二階滑動模式控制器對於抵抗參數變動量以及外部干擾量擁有很好的強健性,且能夠有效的改善傳統滑動模式控制器嚴重的切跳現象,風扇系統主要應用切換型二階滑動模式控制器控制器,Twisting Algorithm、APLV,以及設計一種近似於Twisting Algorithm並且改良之二階滑動模式控制器A-Simple-Reaching-Law,而磁浮球系統主要應用運算型二階滑動模式控制器,Lyapunov Based 及本論文自行設計之新型二階滑動模式控制器Sliding Surface,針對二階滑動模式略慢的響應進行改善。將二階滑動模式大致分類成切換型及運算型兩種類型,並針對系統特性的不同,進行二階滑動模式的探討及設計改善,透過所設計之控制器完成精確且穩定的響應控制,同時具有抵抗總集不確定量的強健性。
關鍵字:風扇系統、風速控制、磁浮球系統、高度控制、滑動模式、二階滑動模式。

Precision control and hardware cost are considered in technological advances. The system precision control and lower cost are important in industry. The fan wind speed control system (FS) is a self-made experimental system that is designed to improve the efficiency of the air-condition system in buildings by control methods. Magnetic ball suspension system(MBSS) used coil current to generate electromagnetic force such that the ball can suspend in the air.
FS and MBSS are nonlinear systems which have many uncertainties in the experimental system. The parameter variations and external disturbances of the system may go out of control because the operating point is out of the pre-designed operating region. Therefore, we use several nonlinear control algorithms to reduce interference of uncertainties. The microchip controller PIC30F4011 is employed for the core operation unit of FS. The output signal is sent through the SPI technique to hardware MCP4921 for A/D converting. The Matlab/simulink is implemented for the MBSS. The PCI-1711U is acted the signal A/D converter between the controller and the MBSS. Therefore, the drive circuits with controllers achieve the high precision wind speed control and height position control.
The second order sliding mode control (SOSMC) has anti-uncertainty ability that overcomes the serious chattering phenomenon of conventional sliding mode control method. In this thesis, we divided the SOSMC as two different types including switching type and mathematical type. The FS uses switching type SOSMC of twisting algorithm, APLV and algorithm of a simple reaching law (ASRL) which are self twisting algorithm. The MBSS uses mathematical type SOSMC which included Lyapunov Based and novel design Sliding Surface SOSMC in this thesis. Finally, the proposed SOSMC algorithms show good responses and convergence ability through our experiments.
Keyword: fan system, wind speed control, magnetic ball suspend system, height control, sliding mod control, second order sliding mod control

目錄
摘要 i
Abstract ii
誌謝 iii
目錄 iv
表目錄 vii
圖目錄 viii
符號表 xiii
第一章: 緒論 1
1.1 風速系統之背景簡介 1
1.1.1 風速系統之研究動機及目的 2
1.1.2 風速系統之文獻回顧 3
1.2 磁浮球系統之背景簡介 4
1.2.1 磁浮球系統研究動機及目的 5
1.2.2 磁浮球系統之文獻回顧 6
1.3 論文架構 7
第二章: 系統架構與數學模型 8
2.1 風扇系統之系統架構及模型推導與建模 8
2.2 磁浮球系統之系統架構及模型推導與建模 15
第三章: 可變結構控制 19
3.1 滑動模式控制理論 19
3.1.1 順滑條件 22
3.1.2 迫近條件 22
3.2 滑動模式之設計技巧 23
3.3 風速系統之滑動模式控制器設計 27
3.4 磁浮球系統之滑動模式控制器設計 28
第四章: 二階滑動模式控制 30
4.1 二階滑動模式控制理論 30
4.2 系統相對階數及滑動函數的選擇 31
4.3 相平面控制及軌跡 31
4.4 二階滑動模式控制器種類 35
4.5 風扇系統之二階滑動模式控制器設計 39
4.5.1 Twisting Algorithm二階滑動模式控制器 39
4.5.2 A-Simple-Reaching-Law(ASRL)二階滑動模式控制器 46
4.5.3 Algorithm with a Prescribed Law of Variation S二階滑動模式控制器 48
4.6 磁浮球系統之二階滑動模式控制器設計 50
4.6.1 Lyapunov-Based二階滑動模式控制器 50
4.6.2 Sliding-Surface二階滑動模式控制器 53
第五章: 實驗系統 56
5.1 風速系統之整體架構 56
5.1.1 PIC30F4011微控制器介紹及可操作範圍 57
5.1.2 PIC30F4011內部功能使用及資料傳輸介面 60
5.1.3 風扇系統之周邊硬體架構 67
5.1.4 軟體應用 74
5.2 磁浮球系統之整體架構 77
5.2.1 PCI-17711U控制卡介紹及可操作範圍 80
5.2.2 磁浮球系統之周邊硬體架構 81
5.2.3 軟體應用 85
第六章: 風扇系統之實驗結果 87
6.1 實驗系統參數 87
6.2 實驗結果探討 90
6.2.1 滑動模式控制器 90
6.2.2 Twisting Algorithm二階滑動模式控制器 94
6.2.3 A-Simple-Reaching-Law(ASRL)二階滑動模式控制器 101
6.2.4 APLV二階滑動模式控制器 108
6.2.5 實驗結果比較圖 115
第七章: 磁浮球系統之實驗結果 126
7.1 實驗系統參數 126
7.2 實驗結果探討 128
7.2.1 滑動模式控制器 128
7.2.2 Lyapunov-Based二階滑動模式控制器 132
7.2.3 Sliding-Surface二階滑動模式控制器 139
7.2.4 實驗結果比較圖 146
第八章: 結論與未來研究方向 156
8.1 結論 156
8.2 未來研究方向 157
參考文獻 158

參考文獻
[1]吳旭聖、江旭政、楊秉純,空調箱送風量測試方法探討與空調送風耗能研究,電機月刊第十八卷第五期,2008。
[2]吳旭聖、江旭政,空調箱送風量探討與耗能探討研究,電機月刊第十九卷第五期,2009。
[3]黃建平,高科技廠房排氣系統之監控與節能探討報告,台灣綠色生產力基金會-節約能源中心第55期,2004。
[4]經濟部能源局能源統計月報2013年4月10日更新之資料http://web3.moeaboe.gov.tw/ECW/populace/web_book/WebReports.aspx?book=M_CH&menu_id=142.
[5]賴慶峰、詹全富、郭欽弘,空壓系統之節能改善與案例分析上,機械月刊35卷9期,2009。
[6]ANSI/ASHRAE/IESNA, “Energy Standard for Buildings Except Low-rise Residential Buildings.,” 2004.
[7]經濟部能源局2014年能源產業技術白皮書http://web3.moeaboe.gov.tw/ECW/populace/content/SubMenu.aspx?menu_id=2324(第三章).
[8]經濟部能源局,能源局101年年報,2013。
[9]可變風量空調系統的靜壓重調控制,機電工程署
[10]ASHRAE handbook, HVAC systems and equipment hand book, 2000.
[11]C. J. Munaro, M. R. Filho, R. M. Borges, S. S. Munareto and W. T. Costa, “Modeling and observer-based nonlinear control of a magnetic levitation system,” IEEE International Conference on Control Applications, vol. 1, pp. 162-167, 2002.
[12]P. H. Chang and J. H. Jung, “A systematic method for gain selection of robust PID control for nonlinear plants of second-order controller canonical form,” IEEE International on Control Systems Technology, vol. 17, no. 2, pp. 473-483, 2009.
[13]Z. Zhu, Y. He, J. QI and T. Wang, “The analysis and synthesis of PID controller based on closed loop response characteristics,” IEEE International on Robotics and Biomimetics, pp. 1930-1936, 2012.
[14]J. Y. Parede, F. Guerin and M. Gorka, “Implementation of a phase lead controller on an FPGA target,” IEEE International Symposium on Industrial Electronics, vol. 1, pp. 205-210, 2006.

[15]J. Fei, “A class of adaptive sliding mode controller with integral sliding surface,” IEEE International Conference on Mechatronics and Automation, pp. 1156-1161, 2009.
[16]J. D. Lee, S. Khoo and Z. B. Wang, “DSP-Based sliding-mode control for electromagnetic-levitation precise-position system,” IEEE Transactions on Industrial Informatics, vol. 9, no. 2, pp. 818-827, 2013.
[17]H. K. Chiang, C. A. Chen and M. Y. Li, “Integral variable-structure grey control for magnetic levitation system,” IEEE Proceedings-Electric Power Applications, vol. 153, no. 6, pp. 809-814, 2006.
[18]F. J. Lin, L. T. Teng and P. H. Shieh, “Intelligent adaptive backstepping control for magnetic levitation apparatus,” IEEE Transactions on Magnetics, vol. 43, no. 5, 2007.
[19]許峯瑞,風扇系統之適應步階滑模控制,國立雲林科技大學,碩士論文,2014。
[20]K. R. S. Kodagoda, W. S. Wijesoma, and E. K. Teoh, “Fuzzy speed and steering control of an AGV,” IEEE Transactions on Control Systems Technology, vol. 10, no. 1, pp. 112-120, 2014.
[21]T. S. Li, S. J. Chang and W. Tong, “Fuzzy target tracking control of autonomous mobile robots by using infrared sensors,” IEEE Transactions on Fuzzy Systems, vol. 12, no. 4, pp. 491-501, 2004.
[22]Y. Wen and X. Ren, “Neural networks-based adaptive control for nonlinear time-varying delays systems with unknown control direction,” IEEE Transactions on Neural Networks, vol. 22, no. 10, pp. 1599-1612, 2011.
[23]F. J. Lin, P. H. Shen and Y. S. Kung, “Adaptive wavelet neural network control for linear synchronous motor servo drive,” IEEE Transactions on Magnetics, vol. 41, no. 12, pp. 1414-1418, 2004.
[24]W. Y. Wang, C. Y. Cheng and Y. G. Leu, “An online GA-based output-feedback direct adaptive fuzzy-neural controller for uncertain nonlinear systems,” IEEE Transactions on Systems Man and Cybernetics, vol. 34, no. 1, pp. 334-345, 2004.
[25]C. M. Lin and C. F. Hsu, “Adaptive fuzzy sliding-mode control for induction servomotor systems,” IEEE Transactions on Energy Conversion, vol. 19, no. 2, pp. 362-368, 2004.
[26]范國徵,微控制器實現二階滑動模式控制於風扇系統,國立雲林科技大學,碩士論文,2015。
[27]A. Levant, “Sliding order and sliding accuracy in sliding mode control,” International Journal of control Automation and System, vol. 58, no. 6, pp. 1247-1263, 1993.
[28]N. Zhang, M. Yang, Y. Jing and S. Zhang, “Congestion control for DiffServ network using second-order sliding mode control,” IEEE Transactions on Industrial Electronics, vol. 56, no. 9, pp. 3330-3337, 2009.
[29]何建民,低溫。超導。磁浮,中華民國中山學術文化基金會中山文庫,1996。
[30]Oshima K., “Superconducting magnetic levitation train project in Japan,” IEEE Transactions on Magnetics, vol. 17, no. 5, pp. 2338-2342, 1981.
[31]楊佳撰,磁浮車控制系統之設計與研究,國立中央大學,碩士論文,2000。
[32]曾有光,運輸用可控永磁式磁浮系統,國立清華大學,博士論文,1995。
[33]P. Tsiotras and M. Arcak, “Low-bias control of AMB subject to voltage saturation state-feedback and observer designs,” IEEE Transactions on Control Systems Technology, vol. 13, no. 2, pp. 262-273, 2005.
[34]吳維中,磁浮軸承之強健控制與鑑別,國立清華大學,碩士論文,2001。
[35]W. Barie and J. Chiasson, “Linear and nonlinear state space controllers for magnetic levitation,” International Journal of Systems Science, vol. 27, no. 11, pp. 1153-1163, 1996.
[36]M. Morishita, T. Azukizawa, S. Kanda, N. Tamura and T. Yokoyama, “A new maglev system for magnetically levitated carrier system,” IEEE Transactions on Vehicle Technology, vol. 38, no. 4, pp. 230-236, 1989.
[37]V. I. Utkin, J. Guldncr and J. Shi, Sliding mode control in electromechanical systems, Taylor & Francis, 1999.
[38]J. J. E. Slotine and W. Li, Applied nonlinear control. New Jersey:Prentice-Hall Englewood Cliffs, NJ, 1999.
[39]陳永平,可變結構控制設計,全華科技圖書股份有限公司,1999。
[40]R. A. DeCarlo, S. H. Zak and G. P. Matthews, “Variable structure control of nonlinear multivariable systems: atutorial,” Proceedings on the IEEE, vol. 76, no. 3, pp. 212-232, March 1988.
[41]J. Y. Hung, W. Gao and J. C. Hung, “Variable structure control: a survey,” IEEE Transactions on Industrial Electronics, vol. 40, no. 1, pp. 2-22, February 1993.
[42]H. K. Khalil, Nonlinear system, Prentice Hall, 2002.
[43]J. J. Slotine and S. S. Sastry, “Tracking control of non-linear systems using sliding surfaces, with application to robot manipulators,” International Journal of control, vol. 38, no. 2, pp. 465-492, 1983.
[44]F. J. Lin, K. K. Shyu and Y. S. Lin, “Variable structure adaptive control for PM synchronous servo motor drive,” IEEE Proceedings-Electric Power Applications, vol. 146, no. 2, pp. 173-185, 1999. 
[45]G. Bartolini, A. Ferrara, A. Levant and E. Usai, “On second order sliding mode controls,” in variable Structure System, Sliding Mode and Nonlinear Control, ser. Lecture Notes in Control and information Sciences, K. D. Young and U.Ozguner, Eds., Godalming: Soringer-Verlag, London Ltd, pp. 329-350, 1999.
[46]郭威宏,高階離散順滑控制,國立成功大學,碩士論文,2003。
[47]M. Mohamadian, M. M. Pedram and F. Ashrafzadeh, “Digital second order sliding mode control for a synchronous reluctance motor,” IEEE Industry Application Conference, pp. 1899-1902, 2004.
[48]P. Trivedi and B. Bandyopadhyay, “A simple reaching law based design method for 2-sliding mode control,” IEEE International Conference on Industrial Technology, pp. 53-56, 2010.
[49]H. K. Chiang, C. C. Fang, W. B. Lin and G. W. Chen, “Second-order sliding mode control for a magnetic levitation system,” 8th Asian Control Conference, pp. 602-607, 2011.
[50]Y. Orlov, “Finite time stability and robust control synthesis of uncertain switched system,” SIAM Journal on Control and Optimization, vol. 43, no. 4, pp. 1253-1271, 2005.
[51]Y. Wu, X. Yu, and Z. Man, “Terminal sliding mode control design for uncertain dynamic system,” System & Control Letters, vol. 34, no. 5, pp. 281-287, 1998.
[52]N. Zhang, M. Yang, Y. Jing and S. Zhang, “Congestion control for DiffServ network using second-order sliding mode control,” IEEE Transactions on Industrial Electronics, vol. 56, no. 9, pp. 3330-3337, 2009.
[53]J. D. Lee, S. Khoo and Z. B. Wang, “DSP-Based sliding-mode control for electromagnetic levitation precise-position system,” IEEE Transactions on Industrial Informatics, vol. 9, no. 2, pp. 818-827, 2013.
[54]曾百由,dsPIC數位訊號控制器原理與應用,宏友圖書開發股份有限公司,2009。
[55]dsPIC30F4011 Data Sheet, dsPIC30F4011/4012 Data Sheet High-Performance 16-Bit Digital Signal Controllers, Microchip Technology Inc, 2010.
[56]dsPIC30F參考手冊,dsPIC30F系列參考手冊,Microchip Technology Inc,2006。
[57]林銘波,微算機基本原理與應用,全華科技圖書公司,2013。
[58]ICD2 User’s Guide, MPLAB ICD2 in-circuit debugger user’s guide, Microchip Technology Inc, 2003.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top