跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.181) 您好!臺灣時間:2025/12/13 22:02
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:李誌展
研究生(外文):Chih-Chan Li
論文名稱:在超重力系統中製備碘化銀奈米粉體
論文名稱(外文):Synthesis of Silver Iodide Nanoparticles Using a High-Gravity System
指導教授:戴怡德戴怡德引用關係
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:化學工程學研究所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2010
畢業學年度:98
語文別:中文
論文頁數:133
中文關鍵詞:奈米碘化銀粒子微觀混合超重力相變化超離子導體
外文關鍵詞:nano silver iodide particlemicromixingHigh-gravityphase transitionsuperionic conductor
相關次數:
  • 被引用被引用:3
  • 點閱點閱:478
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
奈米碘化銀具有特殊的光、電及催化性質使其在工業上具有很大的用途。奈米碘化銀常見的製備方法有:逆微乳膠法和反應沉澱法。逆微乳膠法能藉由調控油、水及界面活性劑的比例來調控乳胞的大小,然而逆微乳膠法受限於產量及成本,因此放大仍有困難。反應沉澱法則因傳統反應器混合效率不佳而不易得到均勻且單分布的粒子。為了改善微觀混合,超重力反應沉澱技術已經被使用來製備奈米粒子,其是利用強大的離心力來增進質傳速率和微觀混合。
本研究使用超重力系統製備碘化銀,在嘗試了不同的保護劑後挑選出PVP、PEG、BPEG進行系統式的實驗,以反應物濃度、保護劑濃度、超重力旋轉盤轉速為實驗參數製備碘化銀,並以動態光散射儀、電子顯微鏡分析碘化銀之粒徑。
實驗結果發現當反應物濃度為0.20 M,保護劑PVP濃度 10.00 g/L,將所得之碘化銀再分散於去離子中可得到數目平均粒徑47.6 nm,體積平均粒徑66.3 nm的粒子,SEM圖則顯示出粒子乾燥後容易聚集;當反應物濃度為0.20 M保護劑PEG 5.00 g/L時,若將所得之碘化銀再分散以懸浮液方式儲存,可得到數目平均粒徑約134.8 nm的粒子,然體積粒徑成雙峰值,且有大型團聚物出現。以BPEG為保護劑,雖可得到比PEG為保護劑略小的粒子,但在超重力系統的作用下,BPEG非常容易產生泡沫,對產物後續分離純化有不良影響。
在轉速效應方面,當反應物濃度為0.20 M 保護劑PVP濃度為10.00 g/L時,在500 rpm 、2000 rpm和 4000 rpm得到相似的粒徑分布;若使用反應物濃度0.20 M保護劑濃度5.00 g/L PEG或5.00 g/L BPEG探討轉速對粒徑的影響則可看出隨著轉速的提高,大型團聚物的比例則逐漸下降,顯示高轉速有助於提升混合效率。
在常壓下當溫度高於147℃時β/γ-AgI會轉變成α態,然而本研究使用DSC量測碘化銀一階相變化溫度,發現使用PVP製備的碘化銀相變化溫度Tβ/γ→α往高溫方向位移,而Tα→β/γ往低溫方向位移,形成一個大的遲滯迴圈,且隨著粒徑大小與保護劑量而改變。α-AgI是廣為人知的典型超離子導體,其電導度可高達1Ω-1cm-1,若能使α-AgI穩定存在室溫下,將可擴大其在電子產品上的運用,如染料敏化太陽能電池和感應器。

The AgI nanoparticles have unique optical, electrical and catalytic properties that make it useful in industrial applications. The common methods for preparing AgI nanoparticles include reverse microemulsion and reactive precipitation. The size of particle synthesized by reverse microemulsion is tunable by controlling the ratio of the water, oil and surfactant. However, this method is difficult to scale up due to low production rate and high cost. It is also difficult to obtain uniform particles through the reactive precipitation method using a stirred tank reactor because of the poor mixing efficiency. To improve mixing efficiency, a high-gravity (Higee) reactive precipitation method has been introduced, which is the technique using centrifugation force to enhance the mass transfer rate and micromixing.
In this research we used the Higee technique to prepared AgI. After trying various protecting agents, we chose PVP, PEG and BPEG as protecting agent to proceed a systematic study. The effects of operation variables, including reactant concentration, protecting agent concentration, and rotation speed were investigated. Finally we used particle size analyzer and an electron microscope to analyze the size of prepared AgI.
Our results showed that when the reactant concentration is 0.20 M using 10.00 g/L PVP as protecting agent, the number mean particle size of re-dispersed slurry was 47.6 nm and the volume mean size was 66.3 nm, but the SEM image showed that agglomerates formed after drying. When the reactant concentration is 0.20 M using 5.00 g/L PEG as protecting agent, the number mean particle size of re-dispersed slurry was about 134.8 nm, and the volume particle size distribution had two peaks due to agglomeration. When using BPEG as protecting agent the particle size was small than the one using PEG, but high rotation speed result in foaming, which would influence the consequent separation and purification steps.
As to the rotation speed effect is concerned, no matter the rotation was 500, 2000 or 4000 rpm, we obtained similar volume particle size distribution(PSD) and number particle size distribution when the reactant concentration was 0.20 M using 10.00 g/L PVP as protecting agent. When the reactant concentration was 0.20 M using 5.00 g/L PEG or 5.00 g/L BPEG as protecting agent, the rotation speed had a remarkable influence on the volume PSD. As the rotation speed was increasing, the percentage of agglomerated particles was decreasing. This showed that higher rotation speed enhanced the mixing efficiency.
It is well known that β/γ-AgI undergoes a phase transition into α-phase when the temperature is above 147℃ at normal pressure. In our research, when using DSC to study the first order phase transition temperature of the prepared AgI, we found that the phase transition temperature Tβ/γ→α shifts to higher temperature and Tα→β/γ shifts to lower temperature when using PVP as protecting agent. The two temperatures form a large hysteresis loop which was related with particle size and protecting agent. It is well known that α-AgI is a typical superionic conductor with conductivity up to 1 Ω-1cm-1. If we can stabilize α-AgI at room temperature, we can broaden its applications to many electronic products such as solar cell and sensor.



摘要........……………………………..………….………………………………………I
Abstract ........…………………………………..……………………………………III
目錄......……………………………………………..…………………………………V
圖索引 ........…………………………………….……………………………………VII
表索引 ........……………………………………………………………….…………XV
第一章 緒論........…………………………………………………………………….1
第二章 文獻回顧…………………………………………………………………….4
2-1 碘化銀的基本資料..……..……..……..…………….………………………4
2-2 碘化銀的運用..……..……..……..……………………….…………………8
2-2-1人造雨晶種運用..……..……..……..…………….…………………8
2-2-2 感光材料..……..……………..……..…………….…………………8
2-2-3 離子導電材料..……..……..……..…………….……………………9
2-2-4 光儲存..……..……..……………....…………….…………………12
2-2-5 光觸媒..……..……..…………..…..…………….…………………13
2-2-6 感測器..……..…….……………….…………….…………………16
2-3碘化銀的製備..……..…………………..…..…….……….……………….…17
2-3-1 反應沉澱法..……….……. ..……..…….………………….…………17
2-3-2 逆微乳膠法..……….……. ..……..…….………………….…………21
2-3-3 超音波噴霧熱分解法…………………………………….…. ..……..25
2-3-4 超音波法…….……….………………………….……………………28
2-3-5 其他方法…….……….……………………………………………….28
2-4改善混合效果的反應器…….……….……………………….………………31
2-4-1 泰勒渦漩流…….……….………………………….…………………31
2-4-2 雙股噴射…….…….……….……………..…….……………………32
2-4-3 超重力…….…….……….……………..…….………………………32
2-5結晶動力學…….…….….…….……………..…….…………………………35
2-5-1 溶解度積與過飽和度……….……...………..………………………35
2-5-2 微觀混合對結晶的影響……….……...……………………………..36
2-6超重力微粒化…………..….…….………………………….……...………..40
第三章 實驗原理與方法……..…….….……………….….….…….…….…………49
3-1實驗藥品…..…….….……...………………………………….……….… 49
3-2實驗儀器…..……..…..…....…………………………………….…. ….… 50
3-3分析儀器…..……..……..…....………………………….…………………52
3-4 碘化銀製備….…….…….….………………………………………………53
3-5 奈米粉體的分散原理….………………………..…..………………………55
3-6 產物分析…..……..…..………………………………………………………56
第四章 結果與討論…….…….………..………….…..…….……………………57
4-1保護劑之篩選…….…….…….….……………..…….……………………57
4-1-1無添加保護劑之濃度效應……….…..….…….……….…….………57
4-1-2 PAS ……….....……….………..…………..….………..….…….…61
4-1-3 PSS ……..……..…….….………..…………..….………..….……64
4-1-4 PVP ……….……………….……..…….….………..…………..…67
4-1-5 PEG……..…..….……….…..………..…….….………..…………71
4-1-6 BPEG……..………………………..…….….………..………… 73
4-1-7其他保護劑………….………………………..…….….………..…73
4-2以PVP為保護劑之實驗結果…..……..…………….…..………..…………75
4-2-1 PVP濃度效應………………………………………….……..…75
4-2-2反應物濃度效應….…………………….………………………….80
4-2-3 旋轉盤轉速效應…….………………………….………….………84
4-3 以PEG為保護劑之實驗結果……..……………………..………….………87
4-3-1 PEG濃度效應…...….…………………………………….………87
4-3-2反應物濃度效應……...………….…….……………………………90
4-3-3旋轉盤轉速效應………...……….…….……………………………94
4-4 以BPEG為保護劑之實驗結果…...……….……..…………….……………97
4-4-1 BPEG濃度效應………..……..………….….………………………97
4-4-2 反應物濃度效應………………..…………….………………………99
4-4-3 旋轉盤轉速效應……………….……………………………………101
4-5 製備粉體之物性分析……….………………….……..……………………103
4-5-1 FTIR分析…….…….….………..……….………………………103
4-5-2 XRD分析……….……..…….…..……….………………………106
4-5-3 TG-DTA分析...………..…………………………………………111
4-5-4 DSC分析………..…………….…………………………………116
第五章 結論…………………………..……………………….……………………125
參考文獻……………………………………………………...………………………127

Abbasi A. R., Morsali A., Syntheses and characterization of AgI nano-structures by ultrasonic method: Different morphologies under different conditions, Ultrasonics Sonochemistry, 17, 572–578 (2010)

Abid J. P., Girault H. H., Brevet P. F., Selective structure changes of core-shell gold-silver nanoparticles by laser irradiation: homogeneisation vs. silver removal, Chemical Communications, 829-830 (2001)

Burley G., Kinetics and mechanism of the low-cubic to hexagonal phase transformation of silver iodide, Journal of Physical Chemistry, 68, 1111-1114 (1964)

Bruchez Jr M., Moronne M., Gin P., Weiss S., Alivisatos A. P., Semiconductor nanocrystals as fluorescent biological labels, Science, 281, 2013-2016 (1998)

Chen D. H., Huang Y. W., Spontaneous formation of Ag nanoparticles in dimethylacetamide solution of poly(ethylene glycol), Journal of Colloid and Interface Science, 255, 299–302 (2002)

Chen J. F., Wang Y. H., Guo F., Wang X. M., Zheng C., Synthesis of nanoparticles with novel technology: high-gravity reactive precipitation,” Industrial & Engineering Chemistry Research, 39, 948–954 (2000)

Chen J. F., Zhou M. Y., Shao L., Wang Y. Y., Yun J., Chew Y. K., Chan H. K., Feasibility of preparing nanodrugs by high-gravity reactive precipitation, International Journal of Pharmaceutics, 269, 267-274 (2004)

Cafiero L. M., Baffi G., Chianese A., Jachuck R. J. J., Process intensification: precipitation of barium sulfate using a spinning disk reactor, Industrial & Engineering Chemistry Research, 41, 5240–5246 (2002)

Chen S., Ida T., Kimura K., A novel method for large-scale synthesis of AgI nanoparticles, Chemical Communications, 2301-2302 (1997)

Chen S., Ida T., Kimura K., Thiol-Derivatized AgI Nanoparticles: Synthesis, characterization, and optical properties, Journal of Physical Chemistry B, 102, 6169-6176 (1998)

Chen W., Wang Z., Lin Z., Lin L., Photostimulated luminescence of AgI clusters in zeolite-Y, Journal of Applied Physics, 83, 3811-1815 (1996)

Chen Y. S., Tai C. Y., Chang M. H., Liu H. S., Characteristics of micromixing in a rotating packed bed, Journal of the Chinese Institute of Chemical Engineerings, 37, 63-69 (2006)

Dehkordi A. M., Vafaeimanesh A., Synthesis of barium sulfate nanoparticles using a spinning disk reactor: effects of supersaturation, disk rotation speed, free ion ratio, and disk diameter, Industrial & Engineering Chemistry Research, 48, 7574–7580 (2009)

Daniel M. C., Astruc D., Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology, Chemical Reviews, 104, 293-346 ( 2004)

Fujishiro F., Mochizuki., Photo-induced reversible spectral change in several AgI–oxide particle composites, Physica B: Condensed Matter, 376-377, 827-830 (2006)

Fan X. H., Yao W. S., Li G. P., Luo Y. J., Preparation and characterization og AgI nanoclusters with PAMAM dendrimers as template, Photpgraphic Science and Photochemistry, 6, 454-461 (2006)

Guo Y. G., Hu Y. S., Lee J. S., Maier J., High-performance rechargeable all-solid-state silver battery based on superionic AgI nanoplates, Electrochemistry Communications, 8, 1179-1184 (2006)

Guo Y. G., Lee J. S., Maier J., Preparation and characterization of AgI nanoparticles with controlled size, morphology and crystal structure, Solid State Ionics, 177, 2467-2471 (2006)

Henglein A., Gutierrez M., Weller H., Fojtik A., Jirkovsky J., Photochemistry of colloidal semiconductors.30. reactions and fluorescence of AgI and AgI-Ag2S colloids, Berichte Der Bunsen-Gesellschaft-Physical Chemistry Chemical Physics, 93, 593-600 (1989)

Hu C., Peng T., Hu X., Nie Y., Zhou X., Qu J., He H., Plasmon-Induced Photodegradation of Toxic Pollutants with Ag-AgI/Al2O3 under Visible-Light Irradiation, Journal of the American Chemical Society, 132, 857–862 (2010)

Hötzel G., Weppner W., Potentiometric gas sensors based on fast solid electrolytes, Sensors and Actuator, 12, 449-453 (1987)

Hull S., Superionics: crystal structures and conduction processes, Report on Progress in Physics, 67, 1233-1314 (2004)

Jahr R., Photographic Vol. IV, Julius Springer, Vienna (1930)

Kim W.S., Tarbell J.M., Micromixing effects on barium sulfate precipitation in a double-jet semi batch reactor, Chemical Engineering Communications, 176, 89–113 (1999)

Larson D. R., Zipfel W. R., Williams R. M., Clark S. W., Bruchez M. P., Wise F. W., Webb W. W., Water-soluble quantum dots for multiphoton fluorescence imaging in vivo, Science, 300, 1434-1436 (2003)

Leden I, Anionic silver iodide complexes in aqueous solutions, Acta Chemica Scandinavica, 10, 540-541 (1956)

Leden I, A potentiometric study of the complex formation between silver and iodide ions, Acta Chemica Scandinavica, 10, 812-821 (1956)

Longenberger L., Mills G., Formation of metal particles in aqueous solutions by reactions of metal complexes with polymers, The Journal of Physical Chemistry, 99, 475-478 (1995)

Li W. J., Shi E. W., Fukuda T., Particle size of powders under hydrothermal conditions, Crystal Research and Technology, 38, 847 – 858 (2003)

Li Y., Zhang H., Guo Z., Han J., Zhao X., Zhao Q., Kim S. J., Highly efficient visible-light-induced photocatalytic activity of nanostructured AgI/TiO2 photocatalyst, Langmuir, 24, 8351-8357 ( 2008)

Muthuraaman B., Murugesan S., Mathew V., Ganesan S., Paul B. J., Madhavan J., Maruthamuthu P., Suthanthiraraj S., An investigation on the performance of a silver ionic solid electrolyte system for a new detergent-based nanocrystalline dye-sensitized solar cell, Solar Energy Materials & Solar Cells, 92, 1712–1717 (2008)

Moore M. J., Kasper J. S., Crystal Structure of AgI at 3 Kbar, Journal of Chemical Physics, 48, 2446-2450 (1968)

Mulvaney P., Nucleation and stabilization of quantized AgI clusters in aqueous solution, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 81, 231-238 (1993)

Makiura R., Yonemura T., Yamada T., Yamauchi M., Ikeda R., Kitagawa H., Kato K., Takata M., Size-controlled stabilization of the superionic phase to room temperature in polymer-coated AgI nanoparticles, Nature Materials, 8, 476-480 (2009)

Nield V. M., Keen D. A., Hayes W., McGreevy R. L., Structure and fast-ion conduction in α-AgI, Solid State Ionics, 66, 247-258 (1993)
Ohmura N., Suemasu T., Asamura Y., Particle classification in Taylor vortex flow with an axial flow, Journal of Physics: Conference Series, 14, 64–71 (2005)
Oxley P., Brechtelsbauer C., Ricard F., Lewis N., Ramshaw C., Evaluation of spinning disk reactor technology for the manufacture of pharmaceuticals, Industrial & Engineering Chemistry Research, 39, 2175–2182 (2000)

Prager P. R., Growth and characterization of AgI polytypes, Progress in Crystal Growth and Characterization, 7, 451-492 (1983)

Polder R. B., Bijsterbosch B. H., Leeuwen H. P., Electrodynamics of the AgI/solution interface: effect of solution composition and of adsorbed polymer, Journal of Electroanalytical Chemistry, 183, 343-360 (1985)

Piao Y., Kim H., Paired cell for the preparation of AgI nanowires using nanoporous alumina membrane templates, Chemical Communications, 2898-2899 (2003)

Rietveld H. M., A profile refinement method for nuclear and magnetic structures, Journal of Applied Crystallography, 2, 65-71 (1969)

Rudman M., Mixing and particle dispersion in the wavy vortex regime of Taylor-couette flow, AIChe Journal, 44 , 1015-1026 (1998)

Stankiewicz A., Moulijn J. A., Re-engineering the chemical processing plant: process intensification, CRC Press (2003)

Saijo H., Iwasaki M., Tanaka T., Matsubara T., Electron-microscopic study of the growth of sub-microcrystals in nascent silver iodide and silver bromoiodide hydrosols, Photographic Science and Engineering, 26, 92-97 (1982)

Stávek J., Vondrák P., Fořt I., Nývlt J., Šípek M., Influence of hydrodynamic conditions on the controlled double-jet precipitation of silver halides in mechanically agitated systems, Journal of Crystal Growth, 99,1098-1103 (1990)

Shaviv R., Westrum E. F., Grønvold F., Stølen S., Inaba A., Fujii H., Chihara H., Heat capacity, thermodynamic properties, and transitions of silver iodide, The Journal of Chemical Thermodynamics, 21, 631-651 (1989)

Sun S. R., Xia D. G., An ab-initio calculation study on the super ionic conductors α-AgI and Ag2X (X=S, Se) with BCC structure, Solid State Ionics, 179, 2330–2334 (2008)

Sinevic V., Kuboi R., Nienow A. W., Power numbers, Taylor numbers and Taylor vortices in viscous Newtonian and Non-Newtonian fluids, Chemical Engineering Science, 41, 29l5-2923 (1986)

Tan H., Fan W. Y., Laser-based synthesis of core Ag-shell AgI nanoparticles, Chemical Physics Letters, 406, 289-293 (2005)

Tan J., Bergantin J. H., Merkoçi A., Alegret S., Sevilla F., Oil dispersion of AgI/Ag2S salts as a new electroactive material for potentiometric sensing of iodide and cyanide, Sensors and Actuator B, 101, 57-62 (2004)

Tamura S., Takeuchi K., Mao G., Csencsits R., Fan L., Otomo T., Saboungi M. L., Colloidal silver iodide: synthesis by a reverse micelle method and investigation by a small-angle neutron scattering study, Journal of Electroanalytical Chemistry, 559, 103-109 (2003)

Tanaka T., Saijo H., Matsubara T., Optical-absorption studies of the growth of microcrystals in nascent suspensions .3. absorption-spectra of nascent silver iodide hydrosols, Journal of Photographic Science, 27, 60-65 (1979)

Validžić I. L., Janković I. A., Mitrić M., Bibić N., Nedeljković J. M., Growth and quantum confinement in AgI nanowires, Materials Letters, 61, 3522–3525 (2007)

Validžić I. L., Janković V., Uskoković D. P., Nedeljković J. M., Formation of silver iodide particles from thermodynamically stable clusters using ultrasonic spray pyrolysis, Journal of the European Ceramic Society, 27, 927–929(2007)

Validžić I. L., Janković V., Uskoković D. P., Nedeljković J. M., Influence of solvent on the structural and morphological properties of AgI particles prepared using ultrasonic spray pyrolysis, Materials Chemistry and Physics, 107, 28–32(2008)

Vonnegut B., The nucleation of ice formation by silver iodide, Journal of Applied Physics, 18, 593-595 (1947)

Wang Y., Mo J., Cai W., Yao L., Zhang L., Large-scale synthesis of β-AgI nanocrystals, Materials Letters, 56, 502–506(2002)

Xu S., Zhou H., Xu J., Li Y., Synthesis of size-tunable silver iodide nanowires in reverse micelles, Langmuir, 18, 10503-10504 (2002)

Zhai Q. Z., Hu W. H., Guan X., Jiang T. S., Qiu S., Zou M. Q., Luminescence of ordered silver iodide nanoclusters inside zeolite host, Journal of Solid State Chemistry, 169, 81-84(2002)

Zhai Q. Z., Qiu S., Xiao F. S., Zhang Z. T., Shao C. L., Han Y., Preparation, characterization, and optical properties of the host-guest nanocomposite material zeolite-silver iodide, Materials Research Bulletin , 35, 59–73(2000)

Zhang Z., Zhao B., Hu L., PVP protective mechanism of ultrafine silver powder synthesized by chemical reduction process, Journal of Solid State Chemistry, 121, 105-110 (1996)

王耀萱,「利超重力系統開發奈米銀的綠色製程」,碩士學位論文,台大化工所,西元2006年。

郭昱緯,「製備奈米銀之保護劑及操作模式效應」,碩士學位論文,台大化工所,西元2008年。

陳昱紹「旋轉填充床中黏度對質傳影響之研究」,博士學位論文,台大化工所,西元2004年。

陳寶祺,「反應結晶技術與運用」,化工技術,第10卷第9期,第212-229頁,西元2002年9月。

張名惠,「在超重力系統中製備氫氧化鎂與氧化鎂粉體」,碩士學位論文,台大化工所,西元2005年。

戴嘉德「以超重力反應沉澱技術製備碳酸鹽微粒」,博士學位論文,台大化工所,西元2006年。


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top