跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.59) 您好!臺灣時間:2025/10/11 09:46
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:梁幃捷
研究生(外文):Wei-Chieh Liang
論文名稱:化學氣相沉積法製備官能性聚對二甲苯鍍膜及其在生物介面耦合技術之應用
論文名稱(外文):Surface Bioconjugate Chemistry Based on Vapor-Deposited Functionalized Poly-p-xylylene Coatings
指導教授:陳賢燁
指導教授(外文):Hsien-Yeh Chen
口試委員:謝之真蔡偉博童世煌
口試日期:2012-07-26
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:化學工程學研究所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:106
中文關鍵詞:生物介面科學生物耦合技術表面改質功能性聚對二甲苯選擇性化學氣相沉積
外文關鍵詞:biointerface sciencesurface bioconjugationssurface modificationfunctional poly-p-xyleneselective chemistry vapor deposition
相關次數:
  • 被引用被引用:0
  • 點閱點閱:271
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
在過去數十年中,生物分子和表面的交互作用一直以來都是研究學者所注意的領域之一,這些作用統稱為生物介面科學。在生物介面科學的發展之下,連帶探討出許多生物分子的特性以及對於生物環境的交互作用,而且其應用在許多人工材料上發展出許多新興領域和科技,例如:生物醫學、組織工程、微陣列分析系統、生物感測元件等。為了有效發展生物介面科學,對於生物分子鍵結是一大重點之一,而化學共價鍵結生物分子因為其持久性以及穩定性的優點,加上生物正交性(bio-orthoogonal)的生物耦合鍵結特性,能快速且準確應用於各種領域中。
由於許多表面上無具有官能基,例如金屬、陶瓷等,將生物分子固定在其上是一大困難,因此研究對於各種材料的表面改質是一大需要克服問題。而在文獻指出,化學氣相沉積具有官能性的聚對二甲苯,只需一步驟即可簡易地達到表面改質,且化學氣相沉積改質各種材料的選擇性極低,而為了因應生物分子的鍵結,發展出不同種類官能基的聚對二甲苯高分子來應用到生物領域上,例如具有炔基、胺基等官能性之聚對二甲苯等。
本研究就是以多樣化具有官能性的對二甲苯二聚體,以氣相沉積共聚法製備官能性的聚對二甲苯薄膜用來改質人工材料,再利用各種不同特殊性的生物耦合技術來達到控制生物分子鍵結,並且應用在許多生物領域上,例如控制細胞生長、抗汙表面等。除此之外,若能控制化學氣相沉積技術相信對於生物領域上的研究會更有助力,在本研究中嘗試以電流和化學氣相沉積流速來控制聚對二甲苯生長,達到選擇性地化學氣相沉積於人工材料上。


In past decades, the field of biointerface science, which is the reaction between surface and biomolecules, has been focused by chemists and biologists. Because more and more papers reported about surface biological chemistry, the functions of biomolecules and the interactions between biomolecules and environments has been discussed, and they were applied in various types of artificial materials. Moreover, according to growth of biointerface science, many new fields and technologies have been developed, such as biomedical, tissue engineering, micro total analysis systems (μTAS) ans biosensors. For the studying surface biological chemistry effectively, the selective conjugation onto surface is one of most important issue and, for the characteristics of enduing and stability, the covalence conjugation is superior. For the reason of the characteristics, the recently developing surface bioconjugations are bio-orthoogonal, fast, and site-specific, including the carbondimide reaction of amine and carboxylic acid, the thiol-ene reacton and the click chemistry. However, many artificial materials have no functional group such as metals and ceramics. It is the reason that a new field of surface modification has raised. Through chemistry vapor deposition, coating functional poly-p-xylene onto surface to modify surface is a one-step process, and it doesn’t have any inhibition for materials. Even, for the functional groups of biomolecules, papers dicected that various types of functional poly-p-xylene, such as Poly (4-ethynyl-p-xylylene-co-p-xylylene), Poly (4- aminomethyl-p-xylylene-co-p-xylylene), have been synthesized to conjugate the biomolecules and apply in many fields.
My research is that synthesize various functional [2,2] paracyclophane and use them to modify surface through chemistry vapor deposition. For the unique selective bioconjugtions, it can control the covalence of biomolecules and can be applied in biology fields such as controlling cell growth and anti-fouling. Moreover, we developed a new technology to control the chemical vapor deposition. Electric and deposition rate can control the deposition of functional poly-p-xylene onto specific area to achieve selective chemistry vapor deposition. For the new technology, surface modification can be precise, low limits, and applied extensively.


誌謝……………………………………………………………………........i
中文摘要……………………………………………………………….......ii
Abstract……………………………………………………………………iii
英文縮寫說明…………………………………………………………….IV
第一章 緒論……………………………………………………………………………………………………………1
1.1生物介面科學…………………………….……..………………...1
1.2生物介面耦合技術介紹…………………………………………...1
1.3 化學氣相沉積系統應用於生物耦合技術……………….………6
1.4 研究動機………………………………………..…..…………….7
第二章 實驗………………………………………………………...……8
2.1試片及材料之製備…………………………………………....…...8
2.2合成官能性對二甲苯二聚體………………………………….....10
2.3化學氣相沉積共聚法製備官能性聚對二甲苯……………….…17
2.3.1單向化學氣相沉積共聚單一官能性聚對二甲苯………..18
2.3.2雙向化學氣相沉積共聚多元官能性聚對二甲苯………...23
2.4官能性聚對二甲苯應用於表面生物耦合技術………………….24
2.4.1單一官能性聚對二甲苯應用於表面生物耦合技術……...24
2.4.2多元官能性聚對二甲苯應用於表面生物耦合技術……...32
2.5蛋白質吸附試驗………………………………………….………34
2.6細胞培養試驗…………………………………………….………34
2.7電流對官能性聚對二甲苯沉積試驗……………………...……..35
2.8沉積流速對官能性聚對二甲苯沉積試驗…………………...…..35
2.9實驗設備及分析儀器………………………………………...…35
第三章 實驗結果與討論………………………………………………………………………38
3.1 表面特性分析……….…………………………………………..39
3.2 化學氣相沉積共聚法製備官能性聚對二甲苯鍍膜…………...45
3.2.1單一官能性聚對二甲苯鍍膜……………………...………45
3.2.2多元官能性聚對二甲苯鍍膜……………………………...50
3.3官能性聚對二甲苯於表面生物耦合技術之應用……...………..52
3.3.1單一官能性聚對二甲苯於表面生物耦合技術之應用…...52
3.3.2多元官能性聚對二甲苯於表面生物耦合技術之應用…...68
3.4電流對化學氣相沉積選擇性影響……………………………….70
第四章 結論………………………………………………..…………….75
第五章 未來展望…………………...…………………………………....76
5.1生物耦合技術…………………………………………..………...76
5.2多官能性高分子與表面梯度組成………………………….....…76
5.3具有選擇性的化學氣相沉積效果…....………………..……...…77
參考文獻……………………………………………………………...…..78
附錄…………………………………………………………………….....85


1.J. Lippincott-Schwartz, G. H. Patterson, Science 300, 87 (Apr 4, 2003).
2.J. Zhang, R. E. Campbell, A. Y. Ting, R. Y. Tsien, Nature Reviews Molecular Cell Biology 3, 906 (Dec, 2002).
3.A. N. Glazer, Nature 381, 290 (May, 1996).
4.J. A. Prescher, C. R. Bertozzi, Nature Chemical Biology 1, 13 (Jun, 2005).
5.E. M. Sletten, C. R. Bertozzi, Angewandte Chemie-International Edition 48, 6974 (2009, 2009).
6.M. Di Marco et al., International Journal of Nanomedicine 5, 37 (2010, 2010).
7.J. Lahiri, L. Isaacs, J. Tien, G. M. Whitesides, Analytical Chemistry 71, 777 (Feb, 1999).
8.I. S. Carrico, B. L. Carlson, C. R. Bertozzi, Nature Chemical Biology 3, 321 (Jun, 2007).
9.H. C. Kolb, M. G. Finn, K. B. Sharpless, Angewandte Chemie 113, 2056 (2001).
10.R. Breinbauer, M. Kohn, Chembiochem 4, 1147 (Nov 7, 2003).
11.G. C. Tron et al., Medicinal Research Reviews 28, 278 (2008).
12.C. R. Morgan, F. Magnotta, A. D. Ketley, Journal of Polymer Science Part a-Polymer Chemistry 15, 627 (1977, 1977).
13.M. C. Cushing, K. S. Anseth, Science 316, 1133 (May 25, 2007, 2007).
14.A. B. Lowe, Polymer Chemistry 1, 17 (Mar, 2010).
15.N. Gupta et al., Nature Chemistry 2, 138 (Feb, 2010).
16.A. Abuchowski, T. Vanes, N. C. Palczuk, F. F. Davis, Journal of Biological Chemistry 252, 3578 (1977).
17.M. J. Roberts, M. D. Bentley, J. M. Harris, Adv. Drug Deliv. Rev. 54, 459 (Jun, 2002).
18.P. Kingshott, J. Wei, D. Bagge-Ravn, N. Gadegaard, L. Gram, Langmuir 19, 6912 (Aug 19, 2003).
19.J.-F. Lutz, H. G. Boerner, Progress in Polymer Science 33, 1 (Jan, 2008).
20.J. Kalia, R. T. Raines, Current Organic Chemistry 14, 138 (Jan, 2010).
21.X. Liu et al., Langmuir 22, 7719 (2006/08/01, 2006).
22.J.-F. Lutz, Angewandte Chemie International Edition 47, 2182 (2008).
23.C. R. Becer, R. Hoogenboom, U. S. Schubert, Angewandte Chemie International Edition 48, 4900 (2009).
24.A. J. Inglis, C. Barner-Kowollik, Macromolecular Rapid Communications 31, 1247 (Jul 15, 2010).
25.S. S. van Berkel, M. B. van Eldijk, J. C. M. van Hest, Angewandte Chemie-International Edition 50, 8806 (2011, 2011).
26.H. C. Kolb, K. B. Sharpless, Drug Discovery Today 8, 1128 (Dec 15, 2003).
27.D. G. Castner, B. D. Ratner, Surface Science 500, 28 (2002).
28.J. Sanchis, F. Canal, R. Lucas, M. J. Vicent, Nanomedicine 5, 915 (Aug, 2010).
29.J. Jagur-Grodzinski, Polymers for Advanced Technologies 17, 395 (Jun, 2006).
30.W. R. Algar et al., Bioconjugate Chemistry 22, 825 (May, 2011).
31.J.-Y. Byeon, F. T. Limpoco, R. C. Bailey, Langmuir 26, 15430 (Oct 5, 2010).
32.J. Lahann, Polymer International 55, 1361 (Dec, 2006).
33.H.-Y. Chen, J. Lahann, Langmuir 27, 34 (Jan 4, 2011).
34.M.-A. Neouze, U. Schubert, Monatshefte fur Chemie / Chemical Monthly 139, 183 (2008).
35.G. Arslan, M. Ozmen, B. Gunduz, X. L. Zhang, M. Ersroz, Turkish Journal of Chemistry 30, 203 (2006, 2006).
36.J. Lahann, R. Langer, Macromolecules 35, 4380 (May, 2002).
37.J. Lahann et al., Analytical Chemistry 75, 2117 (May 1, 2003).
38.J.-T. Wu et al., Macromolecular Rapid Communications 33, 948 (2012).
39.V. V. Rostovtsev, L. G. Green, V. V. Fokin, K. B. Sharpless, Angewandte Chemie-International Edition 41, 2596 (2002, 2002).
40.K. G. Patel, J. R. Swartz, Bioconjugate Chemistry 22, 376 (Mar, 2011).
41.D. C. Dieterich, A. J. Link, J. Graumann, D. A. Tirrell, E. M. Schuman, Proceedings of the National Academy of Sciences of the United States of America 103, 9482 (Jun 20, 2006).
42.D. Rabuka, S. C. Hubbard, S. T. Laughlin, S. P. Argade, C. R. Bertozzi, Journal of the American Chemical Society 128, 12078 (Sep, 2006).
43.R. N. Hannoush, N. Arenas-Ramirez, Acs Chemical Biology 4, 581 (Jul, 2009).
44.F. Seela, S. S. Pujari, Bioconjugate Chemistry 21, 1629 (Sep, 2010).
45.T. Yamada et al., Journal of Organic Chemistry 76, 1198 (Mar 4, 2011).
46.F. Amblard, J. H. Cho, R. F. Schinazi, Chemical Reviews 109, 4207 (Sep, 2009).
47.A. Fernando, Current Opinion in Chemical Biology 8, 211 (2004).
48.H. Vallette, L. Ferron, G. Coquerel, A. C. Gaumont, J. C. Plaquevent, Tetrahedron Lett. 45, 1617 (Feb, 2004).
49.C. L. Feng et al., Advanced Materials 19, 286 (Jan 20, 2007).
50.I. L. Medintz et al., Nat Mater 5, 581 (2006).
51.A. J. Kuijpers et al., Journal of Biomaterials Science-Polymer Edition 11, 225 (2000, 2000).
52.G. M. Whitesides, E. Ostuni, S. Takayama, X. Jiang, D. E. Ingber, in Annual Review of Biomedical Engineering, M. L. D. K. R. T. M. Yarmush, Ed. (2001), vol. 3, pp. 335-373.
53.X. M. Zhao, Y. N. Xia, G. M. Whitesides, Journal of Materials Chemistry 7, 1069 (Jul, 1997).
54.M. D. Steven, J. H. Hotchkiss, Journal of Applied Polymer Science 110, 2665 (2008).
55.A. Bilyk et al., Progress in Organic Coatings 62, 40 (2008).
56.J. D. J. S. Samuel et al., Macromolecular Chemistry and Physics 211, 195 (Jan 19, 2010).
57.A. Virkar, M.-M. Ling, J. Locklin, Z. Bao, Synthetic Metals 158, 958 (Dec, 2008).
58.C. Bunte, J. Ruhe, Macromolecular Rapid Communications 30, 1817 (2009).
59.T. Brandstetter et al., Journal of Virological Methods 163, 40 (2010).
60.W. W. Shen, S. G. Boxer, W. Knoll, C. W. Frank, Biomacromolecules 2, 70 (Spring, 2001).
61.W. A. Hyman, Annals of Biomedical Engineering 26, 338 (1998).
62.T. Posner, Berichte der deutschen chemischen Gesellschaft 38, 646 (1905).
63.C. E. Hoyle, T. Y. Lee, T. Roper, Journal of Polymer Science Part A: Polymer Chemistry 42, 5301 (2004).
64.K. Griesbaum, Angewandte Chemie International Edition in English 9, 273 (1970).
65.H. Nandivada, X. Jiang, J. Lahann, Advanced Materials 19, 2197 (2007).
66.W. H. Binder, R. Sachsenhofer, Macromolecular Rapid Communications 28, 15 (2007).
67.K. L. Killops, L. M. Campos, C. J. Hawker, Journal of the American Chemical Society 130, 5062 (2008/04/01, 2008).
68.L. M. Campos et al., Macromolecules 41, 7063 (2008/10/14, 2008).
69.A. S. Goldmann et al., Macromolecules 42, 3707 (2009/06/09, 2009).
70.M. W. Jones, M. I. Gibson, G. Mantovani, D. M. Haddleton, Polymer Chemistry 2, 572 (2011).
71.N. Gupta et al., Nat Chem 2, 138 (2010).
72.M. Takwa, N. Simpson, E. Malmstrom, K. Hult, M. Martinelle, Macromolecular Rapid Communications 27, 1932 (2006).
73.R. D. Little, M. R. Masjedizadeh, O. Wallquist, J. I. McLoughlin, in Organic Reactions. (John Wiley & Sons, Inc., 2004).
74.B. D. Mather, K. Viswanathan, K. M. Miller, T. E. Long, Progress in Polymer Science 31, 487 (2006).
75.J. W. Chan, C. E. Hoyle, A. B. Lowe, M. Bowman, Macromolecules 43, 6381 (2010/08/10, 2010).
76.Y. Ishii, S. S. Lehrer, Biophysical Journal 50, 75 (1986).
77.F. M. Veronese, Biomaterials 22, 405 (2001).
78.W. Yuan, J. Yang, P. Kopečkova, J. i. Kopeček, Journal of the American Chemical Society 130, 15760 (2008/11/26, 2008).
79.Z. P. Tolstyka, J. T. Kopping, H. D. Maynard, Macromolecules 41, 599 (2008/02/01, 2007).
80.J. Huwyler, D. Wu, W. M. Pardridge, Proceedings of the National Academy of Sciences 93, 14164 (November 26, 1996, 1996).
81.K. L. Christman, H. D. Maynard, Langmuir 21, 8389 (2005/08/01, 2005).
82.J. P. Gering, L. Quaroni, G. Chumanov, J. Colloid Interface Sci. 252, 50 (Aug, 2002).
83.G. M. Eldridge, G. A. Weiss, Bioconjugate Chemistry 22, 2143 (Oct, 2011).
84.S. N. Khan, B. J. Kim, H. S. Kim, Bioorg Med Chem Lett 17, 5139 (Sep 15, 2007).
85.S.-J. Yoon et al., Glycobiology 17, 1007 (Sep, 2007).
86.S. M. Rele, S. S. Iyer, E. L. Chaikof, Tetrahedron Lett. 48, 5055 (Jul 16, 2007).
87.A. Ding, J. C. Ojingwa, A. F. McDonagh, A. L. Burlingame, L. Z. Benet, Proceedings of the National Academy of Sciences of the United States of America 90, 3797 (May 1, 1993).
88.S. N. S. Alconcel, A. S. Baas, H. D. Maynard, Polymer Chemistry 2, 1442 (2011, 2011).
89.Q. D. Chen, L. M. Dai, M. Gao, S. M. Huang, A. Mau, Journal of Physical Chemistry B 105, 618 (Jan 25, 2001).
90.A. D. Mendelsohn, D. A. Bernards, R. D. Lowe, T. A. Desai, Langmuir 26, 9943 (Jun 15, 2010).
91.A. Bradshaw et al., J. Exp. Biol. 214, 1699 (May, 2011).
92.I. Chen, M. Howarth, W. Lin, A. Y. Ting, Nat Methods 2, 99 (Feb, 2005).
93.K. J. Yarema, L. K. Mahal, R. E. Bruehl, E. C. Rodriguez, C. R. Bertozzi, Journal of Biological Chemistry 273, 31168 (Nov 20, 1998).
94.D. Rideout, Cancer Invest. 12, 189 (1994).
95.Y. Elkasabi et al., Chemical Vapor Deposition 15, 142 (Jun, 2009).
96.A. W. Miller, J. F. Robyt, Biotechnol Bioeng 25, 2795 (Nov, 1983).
97.Y. Jun, T. Cha, A. Guo, X. Y. Zhu, Biomaterials 25, 3503 (2004).
98.T. W. Cha, V. Boiadjiev, J. Lozano, H. Yang, X. Y. Zhu, Analytical Biochemistry 311, 27 (2002).
99.S. Lee, R. B. Greenwald, J. McGuire, K. Yang, C. Shi, Bioconjugate Chemistry 12, 163 (2001/03/01, 2001).
100.R. B. Greenwald, H. Zhao, J. Xia, A. Martinez, Journal of Medicinal Chemistry 46, 5021 (2003/11/01, 2003).
101.S. Rawale, L. M. Hrihorczuk, Wei, J. Zemlicka, Journal of Medicinal Chemistry 45, 937 (2002/02/01, 2002).
102.T. L. Andresen, J. Davidsen, M. Begtrup, O. G. Mouritsen, K. Jorgensen, Journal of Medicinal Chemistry 47, 1694 (2004/03/01, 2004).
103.T. Bocking et al., Langmuir 21, 10522 (2005/11/01, 2005).
104.K. Huang, B. P. Lee, D. R. Ingram, P. B. Messersmith, Biomacromolecules 3, 397 (2002/03/01, 2002).
105.M. Bodanszky, M. A. Bednarek, Journal of Protein Chemistry 8, 461 (Aug, 1989).
106.V. A. Shibnev, T. P. Chuvaeva, K. T. Poroshin, Russian Chemical Bulletin 19, 111 (1970).
107.P. Theato, Journal of Polymer Science Part A: Polymer Chemistry 46, 6677 (2008).
108.M. Adamczyk, J. R. Fishpaugh, P. G. Mattingly, Tetrahedron Lett. 36, 8345 (1995).
109.L. Kisfaludy, J. E. Roberts, R. H. Johnson, G. L. Mayers, J. Kovacs, The Journal of Organic Chemistry 35, 3563 (1970/10/01, 1970).
110.L. Francesch, S. Borros, W. Knoll, R. Forch, Langmuir 23, 3927 (2007/03/01, 2007).
111.X. Deng, T. W. Eyster, Y. Elkasabi, J. Lahann, Macromolecular Rapid Communications 33, 640 (Apr 23, 2012).
112.Y. Zhang et al., Biomaterials 31, 3231 (2010).
113.J. Robertus, W. R. Browne, B. L. Feringa, Chemical Society Reviews 39, 354 (2010, 2010).
114.M. Mrksich, Mrs Bulletin 30, 180 (Mar, 2005).
115.C. S. Chen, J. L. Alonso, E. Ostuni, G. M. Whitesides, D. E. Ingber, Biochemical and Biophysical Research Communications 307, 355 (Jul 25, 2003).
116.K. Maehana, H. Tani, T. Kamidate, Analytica Chimica Acta 560, 24 (Feb 23, 2006).
117.H. Kirsebom et al., Journal of Bioactive and Compatible Polymers 22, 621 (Nov, 2007).
118.K. Park, Y. M. Ju, J. S. Son, K.-D. Ahn, D. K. Han, Journal of Biomaterials Science-Polymer Edition 18, 369 (2007, 2007).
119.C. Yu et al., Analytical Chemistry 75, 1958 (Apr 15, 2003).
120.Y. Elkasabi, H. Y. Chen, J. Lahann, Advanced Materials 18, 1521 (Jun 19, 2006).
121.K. M. Vaeth, K. F. Jensen, Chemistry of Materials 12, 1305 (May, 2000).
122.H. Y. Chen, J. H. Lai, X. W. Jiang, J. Lahann, Advanced Materials 20, 3474 (Sep, 2008).


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top