|
[1](2003) IEEE 802.15 WPAN High Rate Alternative PHY Task Group 3a (TG3a). [Online]. Available: http://www.ieee802.org/15/pub/TG3a.html [2]A. Batra et al, “Multi-band OFDM Physical Layer Proposal,” IEEE 802.15 WPAN High Rate Alternative PHY Task Group 3a (TG3a), Sep. 2003, http://www.ieee802.org/15 [3]E. Green, “W241: System Architectures for High-Rate Ultra Wideband Communications,” Intel Labs. [4]Y.-Z. Lin, Y.-T. Liu and S.-J. Chang, “A 5-bit 4.2-GS/s Flash ADC in 0.13-um CMOS Process,” IEEE Custom Integrated Circuits Conference, pp.213–216, 2007. [5]S. Padoan, A. Boni, C. Morandi, and F. Venturi, “A Novel Coding Schemes for the ROM of Parallel ADCs, Featuring Reduced Conversion Noise in the Case of Single Bubles in the Thermometer Code,” in IEEE ICECS, 1998, pp. 271–274. [6]T. Sekino, M. Takeda, K. Koma, “A monolithic 8b two-step parallel ADC without DAC and subtractor circuits,” in IEEE International Solid-State Circuits Conference, pp. 46–47, Feb. 1982. [7]A. G. F. Dingwall and V. Zazzu, “An 8-MHz CMOS subranging 8-bit A/D converter,” IEEE J. Solid-State Circuits, vol. SSC-20, pp. 1138–1143, Dec. 1985. [8]A. Arbel and R. Kurz, “Fast ADC,” IEEE Transactions on Nuclear Science, vol. NS-22, Feb. 1975, pp. 446–451. [9]A. G. W. Venes, R. J. van de Plassche, “An 80-MHz, 80-mW, 8-b CMOS folding A/D converter with distributed track-and-hold preprocessing,” IEEE J. Solid-State Circuits, vol. 33, pp. 1932–1938, December 1998. [10]K. Martin, “A high-speed, high accuracy pipeline A/D converter,” Conference record of Asilomar conference on circuits, systems and computers, Pacific Grove, CA, 1981, pp. 489–492. [11]B. Murmann and B. Boser, “A 12-bit 75-MS/s Pipelined ADC Using Open-Loop Residue Amplification,” IEEE J. Solid-State Circuits, vol. 38, no. 12, pp. 2040–2050, Dec. 2003. [12]D. M. Hummels, “Distortion Compensation for Time-Interleaved Analog-to-Digital Converters,” IEEE Inst. and Measurement Tech Conf., Jun. 1996. pp. 728–731. [13]T. Matsuura et al., “An 8 b 20 MHz CMOS half-flash A/D Converter,” in ISSCC Dig. Tech. Papers, Feb. 1988, pp. 200–221. [14]“CMOS Integrated Analog-to-Digital and Digital-to-Analog Converters,” 2nd ed., Rudy van de Plassche, Kluwer Academic Publishers, Ch. 1-3 [15]K. Kattmann and J. Barrow, “A technique for reducing differential non-linearity errors in flash A/D converters,” in Proc. IEEE Int. Solid-State Circuits Conf. 1001, pp. 170–171. [16]P. Scholtens and M. Vertregt, “A 6-b 1.6-Gsample/s flash ADC in 0.18-um CMOS using averaging termination,” IEEE J. Solid-State Circuits, vol. 37, no. 12, pp. 1599–1609, Dec. 2002. [17]C. Sandner, M. Clara, A. Santner, T. Hartig, and F. Kuttner, “A 6-bit 1.2-GS/s low-power flash-ADC in 0.13-µm digital CMOS,” IEEE J. Solid-State Circuits, vol. 40, no. 7, pp. 1499–1505, 2005. [18]F. Silveira et al., “A gm/ID based methodology for the design of CMOS analog circuits and its application to the synthesis of a Silicon-on-Insulator micropower OTA,” IEEE J. Solid-State Circuits, Vol. 31, no. 9, pp. 1314–1319, Sep. 1996. [19]Behzad Razavi, “Design of Analog CMOS Integrated Circuits,” McGraw Hill, 2001. [20]P. M. Figueiredo, P. Cardoso, A. Lopes, C. Fachada, N. Hamanishi, K. Tanabe, and J. Vital, “A 90nm CMOS 1.2V 6b 1GS/s two-step subranging ADC,” in ISSCC Dig. Tech. Papers, Feb. 2006, pp. 568–569. [21]G. Geelen, “A 6b 1.1Gsample/s CMOS A/D converter,” in ISSCC Dig. Tech. Papers, Feb. 2001, pp. 128–129. [22]G. V. der Plas, S. Decoutere, and S. Donnay, “A 0.16 pJ/Conversion-Step 2.5 mW 1.25 GS/s 4b ADC in a 90 nm digital CMOS process,” in ISSCC Dig. Tech. Papers, pp.2308–2309, San Francisco, Feb. 2006. [23]David Johns and Ken Martin, “Analog Integrated Circuit Design”, John Wiley & Sons, New York, 1997. [24]M. Choi and A. A. Abidi, “A 6 b 1.3GSample/s A/D converter in 0.35 �慆 CMOS,” IEEE J. Solid-State Circuits, vol. 36, pp. 1847–1858, Dec. 2001. [25]H. W. Ting, B. D. Liu, and S. J. Chang, “A histogram-based testing method for estimating A/D converter performance,” IEEE Trans. Instrum. Meas., vol. 57, pp. 420–427, Feb. 2008.
|