跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.17) 您好!臺灣時間:2025/09/03 20:10
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:杜聖斌
研究生(外文):Du,Sheng-Bin
論文名稱:二階時延系統穩定化與強韌PID控制器設計
論文名稱(外文):The Stabilization of Second Ordered Time Delay System and the Design of Robust PID Controller
指導教授:黃奇黃奇引用關係
指導教授(外文):Huang,Chi
口試委員:吳俊毅陳奇中黃奇
口試委員(外文):Wu,Jyun-YiChen,Chi-ChungHuang,Chi
口試日期:2013-07-29
學位類別:碩士
校院名稱:義守大學
系所名稱:生物技術與化學工程研究所
學門:生命科學學門
學類:生物科技學類
論文種類:學術論文
論文出版年:2013
畢業學年度:101
語文別:中文
論文頁數:102
中文關鍵詞:時延程序最大穩定度PID控制器二階
外文關鍵詞:PID controllersMaximum stabilityMathematicaTime-delay processStabilizationSecond order
相關次數:
  • 被引用被引用:0
  • 點閱點閱:1078
  • 評分評分:
  • 下載下載:39
  • 收藏至我的研究室書目清單書目收藏:0
  本研究探討使用PID控制器來穩定二階時延的程序以及設計PID控制器參數,使得回饋控制之閉環路系統的穩定度達到最大。
  使用PID控制器來控制帶時延程序的回饋閉環路系統的特徵函數為
f(s)=A(s)+(ki+kps+kds^2)B(s)e^-hs
而穩定化PID控制器參數集的定義為
Ks(sigma)={(kp,ki,kd)包含於R^3| f(s-sigma;kp,ki,kd)包含於Hs },
其中Hs表示所有的根都在複數平面的左半平面。本文發展出一套可行有效的演算法,以 Mathematica 程式語言編寫,判斷Ks(sigma)是否存在,利用此演算法,配合轉軸程序針對以下三種二階帶時延的不穩定程序作探討:(a)帶時延雙重積分器Gp0(s)=e^-hs/s^2;(b)單一不穩定極點Gp1(s)=e^-hs/(s-1)(s+tau);(c) 雙不穩定極點Gp2(s)=e^-hs/(s^2 -2*xi*s+1) 。本文的目的在於分別識別出在(a)程序時延軸線h>=0上;(b)程序參數平面h-tau之第一象限及(c)程序參數平面h-xi之第一象限的哪些區域或範圍內的程序是可以PD控制器來加以穩定。
  在設計最大穩定度PID控制器時,本論文先將時延項e^-hs用Pade'近似式表示,得到一無時延的特徵多項式,再利用文獻上的方法,先求得一組次佳的控制器參數(kp*,ki*,kd*),使用此組控制器參數於原時延程序求得穩定度sigma*,根據此次佳穩定度,本論文建構出PID控制器參數空間內包含Ks(sigma*)的一個最小長方體R*,並在此長方體內判斷Ks(sigma),sigma>sigma*是否存在,以及使用二分法求得最大穩定度的PID控制器參數。
This thesis deals with the stabilization using PID controllers of second-order time-delay unstable systems and the design of maximum stability PID controllers for time=delay processes. In general, the closed-loop characteristic function of a PID-controlled time-delay process can be written as f(s)=A(s)+(ki+kps+kds^2)B(s)e^-hs, where A(s) and B(s) are polynomials in s and kp, ki, kd, are the proportional, integral, and derivative gains of a PID controller. The stabilizing PID controller parameter set Ks(sigma) is defined to be
Ks(sigma)={(kp,ki,kd) belong to R^3| f(s-sigma;kp,ki,kd) belong to Hs },
where Hs denotes the set of functions where roots are all in the open left half of the complex plane.
In this study, we present an efficient algorithm for testing the existence of Ks(sigma). The algorithm is implemented with the Mathematica symbolic package. This algorithm is applied along with the pivot procedure to investigate the PID stabilizability for the following three types of unstable second-order time-delay processes; (a) double integrators plus time-delay process , Gp0(s)=e^-hs/s^2; (b) one unstable- pole second-order plus time-delay process, Gp1(s)=e^-hs/(s-1)(s+tau) ;(c) two unstable-pole second-order plus time-delay process, Gp2(s)=e^-hs/(s^2 -2*xi*s+1). We have identified in stabilizable region that the process parameter space in which the process can be stabilized with a PD controller.
The algorithm of testing the existence of stabilizing PID controller parameter set Ks(sigma) is also applied along with the bisection method to design maximum-stability PID controllers. To reduce the computational load, we first apply the Pade' approximation to delay transfer function e^-hs and use an existed method to find a suboptional maximum-stability PID controller (kp*,ki*,kd*). With this set of PID controller parameters, we then find from the original time-delay process to evaluate the corresponding degree of stability sigma*. We further construct an axis-paralleled minimum box R* that contains the stabilizing set Ks(sigma*). Starting with sigma*, we final apply the algorithm of testing the existence of Ks(sigma), sigma>sigma*, in the domain R* along with the bisection method to find the maximum-stability PID controller (kp,ki,kd).
摘要 II
Abstract III
目錄 V
圖目錄 VII
表目錄 VIII
第一章 緒論 1
1-1 時延系統 3
1-2 PID控制器 4
1-3 最大穩定度控制器設計 6
1-4 D-Partition的理論 8
1-5 組織與章節 10
第二章 穩定化PID控制器參數集之存在測試 12
2-1 前言 12
2-2 無時延程序之穩定化PID控制器的純測試 16
2-2-1 Ks之存在測試 21
2-3 曲線分割平面上有線區域形成多邊形之計算 23
2-4 測試Ks存在之演算法 29
2-5 時延程序之穩定化PID控制器參數集 31
2-6 結論 35
第三章 不穩定二階程序之PID控制器穩定化 36
3-1 前言 36
3-2 帶時延雙積分程序的PD穩定化 38
3-3 單一不穩定極點二階時延程序的PD穩定化 40
3-4 二不穩定極點二階時延程序的PD穩定化 46
3-4-1 計算方式的修正 46
3-4-1-1範例 53
3-4-2 PD可穩定化之程序參數區域 56
第四章 時延程序之最大穩定度PID控制器設計 62
4-1利用時延項 的 近似 63
4-2利用時延模式求最大穩定度PID控制器 69
4-3範例 72
第五章總結與未來展望 80
5-1 總結 80
5-2 未來展望 81
參考文獻 82
附錄A 88



圖目錄
Fig 1-1 回饋控制系統 1
Fig.1-2 P1-P2參數平面上的D分割圖 9
Fig.2-1 PID回饋控制系統 12
Fig.2-2 Gp(s)=(s^3+3s^2+s+7)/(s^5-8s^4+62s^2-97s+42)之kp對omega關係圖 19
Fig.2-3 多邊形區塊 20
Fig.2-4 kp(omega)對omega的關係圖 21
Fig.2-5 四條直線分割xy平面圖 23
Fig.2-6 四條直線分割區域R所形成之多邊形 24
Fig.2-7 Gp(s)=e^-0.4s / (s^2 +s+1)之kp(omega)對omega的關係圖 32
Fig.3-1 tau=1,kp對omega的關係圖 41
Fig.3-2 h-tau參數平面 45
Fig.3-3 (xi,h)=(0.5,2)之kp-kd平面D分割圖 47
Fig.3-4 (xi,h)=(0.5,4)之kp-kd平面D分割圖 47
Fig.3-5 (xi,h)=(0.5,6)之kp-kd平面D分割圖 48
Fig.3-6 (xi,h)=(0.5,8)之kp-kd平面D分割圖 48
Fig.3-7 (xi,h)=(0.5,10)之kp-kd平面D分割圖 49
Fig.3-8 Ks,PD存在判斷 50
Fig.3-9 邊界三角形之搜尋圖 57
Fig.3-10 轉軸程序示意圖 57
Fig.3-11 PD可穩定參數邊界圖 59
Fig.4-1 sigma=0.3284,無限定R-PID 72
Fig.4-2 sigma=0.3284,有限定R-PID 74
Fig.4-3 時延系統,根在複數平面分布圖 76

表目錄
表 2-1 線相交矩陣表 26
表 3-1 kp,m=-0.766696之kp,m-kd,m 穩定關係 54
表 3-2 kp,m=-6.685522之kp,m-kd,m 穩定關係 55
表 3-3 kp,m=-0.530691之kp,m-kd,m 穩定關係 55
表 4-1 無時延系統,無限定測試範圍,最大穩定度表 71
表 4-2 無時延系統,有限定測試範圍,最大穩定度表 73
表 4-3 時延系統,h=0.2,以Pade'近似求解,最大穩定度表 75
表 4-4 時延系統,有限定測試範圍,最大穩定度表 77
表 4-5 時延系統,有限定測試範圍,最大穩定度表 78
[1] Ackermann, J., and Kaesbauer, D., 2003, “Stable polyhedra in parameter space,” Automatica, vol. 39, no. 5, pp. 937–943.

[2] Åström, K. J., and Hägglund, T., 1995, PID Controllers: Theory, Design and Tuning, Instrument Society of America, North Carolina, USA.

[3] Bajcinca, N., 2004, “Computation of stable regions in PID parameter space for time-delay systems,” in Proc. of 5th IFAC Workshop on Time-Delay Systems, Leuven, Belgium.

[4] Bajcinca, N., 2006, “Design of robust PID controllers using decoupling at singular frequencies” Automatica, vol. 42, no. 11, pp. 1943–1949.

[5] Bialkowski, W. L., 1996, “Control of the Pulp and Paper Making Process,” The Control Handbook (CRC Press, Boca Raton, FL, USA), pp. 1219–1242.

[6] Baker, G. A., 1975, Essentials of Padé Approximants, Academic Press, New York-London.

[7] Burke, J. V., Lewis, A. S., and Overton, M. L., 2004, “Variational analysis of the abscissa mapping for polynomials via the Gauss-Lucas theorem,” Journal of Global Optimization, Vol. 28, No. 3-4, pp. 259–268.

[8] Burke, J. V. and Overton, M. L., 2001, “Variational analysis of the abscissa mapping for polynomials,” SIAM Journal on Control and Optimization, Vol. 39, No. 6, pp. 1651–1676.

[9] Cherepova, T. I., and Shubladze, A. M., 2004a, “Stability Degree-Optimal Control Systems of Aperiodic Objects,”Automation and Remote Control, Vol. 65, No. 1, pp. 30–43.

[10] Cherepova, T. I., and Shubladze, A. M., 2004b, “Systems, optimal with respect to the degree of stability, for the control of plants with an "unstable'' numerator in the transfer function,” Automation and Remote Control, Vol. 65, No. 9, pp. 1377–1388.

[11] Clark, R. N., 1961, “Integral of the error squared as a performance index for automatic control systems,” Transactions of the American Institute of Electrical Engineers, Part II: Applications and Industry, vol. 79, no. 6, pp. 467–471.

[12] Dugard, L., and Verriest, E. I., 1998, Stability and Control of Time-delay Systems, vol. 228, Springer-Verlag, London.

[13] Gryazina, E. N., 2004, “The D-Decomposition Theory,” Automation and Remote Control, vol. 65, no. 12, pp 1872–1884.

[14] Gryazina, E. N., Polyak, B. T., and Tremba, A. A., 2008, "D-decomposition technique state-of-the-art," Automation and Remote Control, Vol. 69, No. 12, pp. 1991–2026.

[15] Gulyaev, S. V.; Shubladze, A. M., 1999, “On the time-optimality of tracking systems with a maximum degree of stability,” Automation and Remote Control, Vol. 60, No. 5, pp. 639–651.

[16] Ho, M., Datta, A., & Bhattacharayya, S., 1998, “Design of P, PI and PID controller for interval plants,” Proc. American control conference, pp. 2496–2501.

[17] Hohenbichler, N., 2009, "All stabilizing PID controllers for time delay systems,"
Automatica, Vol. 45, No. 11, pp. 2678-2684.

[18] Hwang, C., and Hsiao, C. Y., 2002, “Solution of a non-convex optimization arising in PI/PID control design,” Automatica, vol. 38, no. 11, pp. 1895–1904.

[19] Hwang, C., and Hwang, J. H., 2004, “Stabilisation of first-order plus dead-time unstable processes using PID controllers,” IEE Proceedings, Part D: Control Theory and Applications, Vol. 151, No. 1, pp. 89–94.

[20] Hwang, C., Hwang. J. H., and Leu, J. F., 2004, "Tuning PID controllers for time-delay processes with maximizing the degree of stability," Proceedings of the 5th Asian Control Conference, Vol. 1, pp. 466–471, 20-23 July 2004, Melbourne, Victoria, Australia

[21] Hwang, J. H., Tsay, S. Y., and Hwang, C., 2000, “Computation of quadratic cost functionals for linear systems with multiple time delays," IEEE Transactions on Automatic Control, Vol. 45, No. 4, pp. 800–805.

[22] Kim, D. P., 2007, "Synthesis of systems with maximum robust degree of stability," Journal of Computer and Systems Sciences International, Vol. 46, No. 5, pp. 721-725.

[23] Kim, D. P., 2009, “Design of speed-optimal continuous linear controllers,” Automation and Remote Control, Vol. 70, No. 3, pp. 347–356.

[24] Krall, A. M., 1968, Stability Techniques for Continuous Linear Systems, Gordon and Breach, New York.

[25] Kuznetsov, S. I., and Shubladze, A. M., 2007, “On the capabilities of PID controls for standard inertial and oscillatory plants,” Automation and Remote Control, Vol. 68, No. 7, pp. 1134–1144.

[26] Li, P., Wang, P., and Du, X., 2009, “An approach to optimal design of stabilizing PID controllers for time-delay systems,” in Proc. Control and Decision Conference, 2009. CCDC '09. Chinese, Guilin, pp. 3465–3470.

[27] Loiseau, J. J., Michiels, W., Niculescu, S. I., and Sipahi, R., 2009, Topics in Time Delay Systems - Analysis, Algorithms and Control, vol. 388, Springer-Verlag, Berlin.

[28] Luyben, W. L., and Luyben, M. L., 1997, Essentials of Process Control, McGraw-Hill, Singapore.

[29] Neimark, Y. I., 1948, "Search for the parameter values that make automatic control system stable," Automatica i Telemekhanika, Vol. 9, No. 3, pp. 190–203,(in Russian).

[30] Neimark, Y. I., 1992, "Robust stability and D-partition," Automation and Remote Control, Vol. 53, No. 7, pp. 957–965.

[31] Normey-Rico, J. E., and Camacho, E. F., 2007, Control of Dead-time Processes, Springer-Verlag, London.

[32] O’Dwyer, A., 2009, Handbook of PI and PID Controller Tuning Rules, 3rd ed. Imperial College Press, London.

[33] Ou, L., Chen X., Feng, Y., and Yu, L., 2010, “Computation of all stabilizing PID controllers for systems with time delay based on singular frequencies,” in Proc. Control Conference (CCC), 2010 29th Chinese, Beijing, Chinese, pp. 931–937.

[34] Rhinehart, R. R., 2000, “The century’s greatest contributions to control practice,” ISA Transaction, Vol. 39, pp. 3–13.

[35] Rosenbrock, H. H., 1955, "The integral-of-error-squared criterion for servo mechanisms," Proceedings of the IEE - Part B: Radio and Electronic Engineering, Vol. 102 , No. 5, pp. 602–607.

[36] Saeki, M., 2006, "Fixed structure PID controller design for standard H∞ control problem," Automatica,Vol. 42, No. 1, pp. 93–100.

[37] Saeki, M., 2007, “Properties of Stabilizing PID Gain Set in Parameter Space,” IEEE Transactions on Automatic Control, vol. 52, No. 9, pp. 1710–1715.

[38] Shubladze, A. M., 1980, “Techniques for designing maximally stable control systems,” Automation and Remote Control, Vol. 41, No. 1, pp. 20–28.

[39] Shubladze, A. M., 1997a, “Sufficient conditions for the extremum in systems with a maximum degree of stability. I.,” Automation and Remote Control, Vol. 58, No. 3, pp. 403–412.

[40] Shubladze, A. M., 1997b, “Sufficient conditions for the extremum in systems with a maximum degree of stability. II,” Automation and Remote Control, Vol. 58, No. 8, pp. 1303–1313.

[41] Shubladze, A. M., 1998a, “A geometric approach to the analysis of optimal structures in systems with a maximum degree of stability. I,” Automation and Remote Control, Vol. 59, No. 4, pp. 515–525.

[42] Shubladze, A. M., 1998b, “A geometric approach to the analysis of optimal structures in systems with a maximum degree of stability. II,” Automation and Remote Control, Vol. 59, No. 5, pp. 668–677.

[43] Shubladze, A. M., 1987, “Procedure for computing optimal stability proportional controls. I,” Automation and Remote Control, Vol. 48, No. 4, pp. 435–442.

[44] Shubladze, A. M., 1990, “Design methods for m -dimensional control laws that are optimal with respect to the degree of stability. III,” Automation and Remote Control, Vol. 51, No. 10, pp. 1376–1384.

[45] Shubladze, A. M., 1999, “Sufficient conditions for the optimality of structures in systems of arbitrary type with a maximum degree of stability,” Automation and Remote Control, Vol. 60, No. 4, pp. 525–536.

[46] Shubladze, A. M., 2001a, “Stability-Optimal One-Dimensional Control Systems. II,” Automation and Remote Control, Vol. 62, No. 4, pp. 557–567.

[47] Shubladze, A. M., 2001b, “Stability-Optimal One-Dimensional Control Systems. II,” Automation and Remote Control, Vol. 62, No. 5, pp. 735–745.

[48] Silva, G. J., Datta, A., and Bhattachaiyya, S. P., 2005, “PID Controllers for Time-Delay Systems,” Birkhauser, Boston.

[49] Söylemez, M.T. , Munro, N., and Baki, H., 2003, "Fast calculation of stabilizing PID controllers," Automatica, Vol. 39, No. 1, pp. 121–126.

[50] Takatsu, H., and Itoh, T., 1999, “Future needs for control theory in industry—report of the control technology survey of Japanese industry.,” IEEE Trans. Control Syst. Technol, Vol. 7, No. 3, pp. 298–305.

[51] Visioli, A., and Zhong, Q. C., 2011, Control of Integral Processes with Dead Time, Springer-Verlag, London.

[52] Walton, K., andMarshall, J.E., 1987, "Direct method for TDS stability analysis," IEE Proceedings, Part D: Control Theory and Applications, Vol. 134 , No. 2, pp. 101–107.

[53] Xu, H., Datta, A., & Bhattacharayya, S. P., 2003, “PID stabilization of LTI plants with time-delay,” Proc. of the 42nd IEEE Conf. on Decision and Control, pp. 4038–4043.

[54] Zagariy, G. I.; Tsaguriya, N. N.; Shubladze, A. M., 1992a, “Synthesizing control systems of maximal and specified degrees of stability. II: The use of dynamic filters in the synthesis of the law of control of objects with delay,” Journal of Automation and Information Sciences, Vol. 25, No. 1, pp. 7–13.

[55] Zagariy, G. I.; Tsaguriya, N. N.; Shubladze, A. M., 1992b, “Synthesizing control systems of maximal and specified degrees of stability. II: The use of dynamic filters in the synthesis of the law of control of objects with delay,” Journal of Automation and Information Sciences, Vol. 25, No. 3, pp. 20–24.

[56] Zhang, W. D., and Xu, X. M., 2002, "H∞ PID controller design for runaway processes with time delay," ISA Transactions, Vol. 41, No. 3, pp. pp. 317–322.

[57] Zhuang, M., and Atherton, D. P., 1993, “Automatic tuning of optimum PID controllers,” IEE Proceedings, Part D: Control Theory and Applications, Vol. 140, No. 3, pp. 216–224.

[58] Zhuang, M., and Atherton, D. P., 1994, “PID controller design for a TITO system,” IEE Proceedings, Part D: Control Theory and Applications, Vol. 141, No. 2, pp. 111–120.

[59] Ziegler, J. G., and Nichols, N. B., 1942, “Optimum settings for automatic controllers,” Trans. Am. Soc. Mech. Eng, Vol. 64, pp. 759–768.

[60]林思源, 2009, “最大穩定度PID控制器設計”, 義守大學生物技術與化學工程研究所碩士論文

[70]蔡宗翰, 2010, “應用Bernstein 區間計算法設計PID控制器”, 義守大學生物技術與化學工程研究所碩士論文
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top