跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.82) 您好!臺灣時間:2026/02/20 08:44
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:鐘鼎雲
研究生(外文):Ding-Yun Chung
論文名稱:由稻殼的鹼水解物分離純化阿魏酸與香豆酸
論文名稱(外文):Separation and Purification of Ferulic and P-coumaric Acids in Alkaline-Hydrolysate from Rice Husk
指導教授:賴世明賴世明引用關係
指導教授(外文):Shih-Ming Lai
口試委員:孫幸宜許孟博
口試委員(外文):Shing-Yi SuenMeng-Bor Hsu
口試日期:2014-06-20
學位類別:碩士
校院名稱:國立雲林科技大學
系所名稱:化學工程與材料工程系
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2014
畢業學年度:102
語文別:中文
論文頁數:129
中文關鍵詞:稻殼香豆酸阿魏酸鹼或酸水解反應液-液萃取分離純化
外文關鍵詞:rice huskp-coumaric acidferulic acidalkaline or acid hydrolysis reactionliquid-liquid extractionseparation and purification
相關次數:
  • 被引用被引用:0
  • 點閱點閱:677
  • 評分評分:
  • 下載下載:25
  • 收藏至我的研究室書目清單書目收藏:0
香豆酸與阿魏酸在醫藥領域上具有重要的應用,如:具抗氧化活性、具降膽固醇活性、預防血栓形成和動脈硬化、具抗微生物和抗炎症活性、以及具抗癌效果等。由於香豆酸與阿魏酸以多糖型式存在於稻殼的細胞壁中,且含量甚低(< 0.5% w/w)。因此如欲由稻殼製備生產高純度的香豆酸與阿魏酸,必須經過水解(提取)、濃縮以及純化等步驟。本研究計畫的目的即在於發展一經濟有效且適合大規模化的提取、濃縮以及純化技術,可以自稻殼中生產高純度以及高回收率的香豆酸與阿魏酸。
本研究以稻殼為原料,在提取步驟方面,首先將採用鹼水解法再加上酸水解法,自稻殼的細胞壁中提取香豆酸與阿魏酸,並選取其最佳的水解條件,因為酸水解所得香豆酸及阿魏酸的含量為鹼水解所得含量的約20%,所以決定採用鹼水解法。最佳鹼水解條件如下:NaOH鹼液濃度=1.5M、反應時間=1hr、反應溫度=60°C、固液比=1g/30 mL,香豆酸及阿魏酸提取率分別為1 w/w % 與0.1w/w %。
在濃縮步驟方面,將鹼水解液添加3倍95%乙醇沉澱去除一些鹽類和雜質後,再經由減壓濃縮除去乙醇達到濃縮倍數為2倍,即可得到精緻水解液,接著將精緻水解液調整pH值至2.5後不過濾,採用液-液萃取法,以乙酸乙酯為油相溶劑。最佳液-液萃取條件如下:萃取時間=2hr、萃取溫度=30℃、水油比例=1/1(v/v)以及溶液pH值=2.5,香豆酸及阿魏酸萃取率和回收率皆可>90%。接著將油相萃取液以濃度需求加水溶解,所得到的萃取轉溶液所含香豆酸及阿魏酸濃度分別約為0.3mg/mL和0.03mg/mL,純度分別約為26.632%及2.286%。
在分離純化步驟方面,以市售三種吸附劑(XAD-4樹脂、XAD-7 HP樹脂、活性碳),經批次吸附法與脫附法分離純化萃取轉溶液中的香豆酸及阿魏酸。雖然使用活性碳所進行吸附香豆酸及阿魏酸效果極佳,但由於階段脫附效果極差,所以就不列入考慮。比較XAD-4與XAD-7HP吸脫附結果得知,XAD-4在分離純化香豆酸及阿魏酸的效果最好。在階段脫附操作方面,以不同水/乙醇比例進行階段脫附,XAD-4在20%、40%與60%乙醇三支分液可脫出大部分的香豆酸及阿魏酸,合併此三支分液作為產物。XAD-4在產物收集方面,一共可回收出137.963mg的香豆酸及13.553mg的阿魏酸,佔總回收率88.697%及92.293%,香豆酸及阿魏酸平均純度分別為41.968%及3.948%。
皆可>90%,接著將油相萃取液以濃度需求加水溶解,所得到的萃取轉溶液所含香豆酸及阿魏酸濃度分別約為0.3mg/mL和0.03mg/mL,純度分別約為26.632%及2.286%。
在分離純化步驟方面,以市售三種吸附劑(XAD-4樹脂、XAD-7 HP樹脂、活性碳),經批次吸附法與脫附法分離純化萃取轉溶液中的香豆酸及阿魏酸。雖然使用活性碳所進行吸附香豆酸及阿魏酸效果極佳,但由於階段脫附效果極差,所以就不列入考慮。比較XAD-4與XAD-7HP吸脫附結果得知,XAD-4在分離純化香豆酸及阿魏酸的效果最好。在階段脫附操作方面,以不同水/乙醇比例進行階段脫附,XAD-4在20%、40%與60%乙醇三支分液可脫出大部分的香豆酸及阿魏酸,合併此三支分液作為產物。XAD-4在產物收集方面,一共可回收出137.963mg的香豆酸及13.553mg的阿魏酸,佔總回收率88.697%及92.293%,香豆酸及阿魏酸平均純度分別為41.968%及3.948%。

p-Coumaric acid (p-CA) and Ferulic acid (FA) have many important applications in the field of medicine such as antioxidant activity, cholesterol-lowering activity, prevention against thrombosis and atherosclerosis, antimicrobial and anti-inflammatory activity, and anticancer effect. However, p-CA and FA are found in very low abundance in rice husk (<0.5% w/w each). They form either ester linkages associated with hemicelluloses or ether linkages associated with lignin in the cell walls of rice husk. The sequential procedures, including extraction by hydrolysis reaction, concentration, separation and purification, are needed for the production of high purity p-CA and FA from rice husk. The objective of this study is to develop an efficient and easy-to-scale-up technique for the extraction, concentration, separation and purification of p-CA and FA from rice husk with high purity and high recovery .
In this study, rice husk was used as the raw material. In the step of extraction, using the alkaline hydrolysis coupled with the acid hydrolysis to extract p-CA and FA extracted from the cell walls of rice husk, the optimal hydrolysis conditions were selected. The results showed that the content of p-CA and FA from the acid hydrolysis were about 20% of those from the alkaline hydrolysis. The alkaline hydrolysis only was used and the optimal NaOH hydrolysis conditions were selected as follows: the NaOH concentration of 1.5 M, the reaction time of 1hr, the reaction temperature of 60 ° C, the solid-liquid ratio of 1g/30 mL, from which the contents of p-CA and FA were found to be about 1 w/w% and 0.1 w/w%, respectively.
In the step of concentration, some precipitated salts and impurities in the extracted alkaline solution were removed by precipitation with 3 volumes of 95% ethanol, and the refined hydrolyzed solution with the concentration ratio of 2 times was obtained by removing the ethanol under reduced pressure. Then, the pH of the refined hydrolyzed solution was adjusted to be 2.5, without filtration, and followed by the liquid-liquid extraction with ethyl acetate as the extraction solvent. The optimal liquid-liquid extraction conditions were selected as follows: extraction time of 2 hr, extraction temperature of 30 ℃, water/oil ratio of 1/1 (v/v) and the pH value of 2.5. The p-CA and FA extraction ratios and recovery ratios were > 90%. Then, the extract in the oil phase was re-dissolved in water at a required concentration, such as approximately 0.3 mg/mL and 0.03 mg/mL for p-CA and FA, respectively, in which the purities of approximately 26.632% and 2.286% for p-CA and FA, respectively, were reached.
In the step of separation and purification, the three kinds of commercially available adsorbents (XAD-4 resin , XAD-7 HP resin , activated carbon) were used in a batch adsorption and desorption purification process to purify p-CA and FA. Although the activated carbon had a good adsorption result, but the desorption result was poor, so it was not adopted. The adsorption-desorption performances of XAD-4 and XAD-7HP resins were compared. The results showed that XAD-4 resin was superior to XAD-7HP resin. In the step desorption with different ethanol composition, XAD-4 resin showed that most of p-CA and FA were desorbed at the elution steps of 20%, 40% and 60% ethanol. The three pools were combined as the product solution. In the product, 137.963 mg of p-CA and 13.553 mg of FA were collected, and the total recoveries of 88.697% and 92.293%, and the average purities of about 41.968% and 3.948% of p-CA and FA, respectively, were reached.

中文摘要 …………………………………………………………….i
ABSTRACT …………………………………………………………….iii
誌謝 …………………………………………………………….v
目錄 …………………………………………………………….vi
表目錄 …………………………………………………………….ix
圖目錄 …………………………………………………………….x
一、 緒論……………………………………………………….1
1.1 前言……………………………………………………….1
1.1.1 阿魏酸的介紹…………………………………………….1
1.1.2 香豆酸的介紹…………………………………………….2
1.2 研究動機………………………………………………….2
1.3 研究方法………………………………………………….4
二、 文獻回顧…………………………………………………..6
2.1 以稻殼為原料生產阿魏酸及香豆酸…………………….6
2.1.1 稻殼中所含的阿魏酸及香豆酸相關生物活性物質…….6
2.1.2 阿魏酸及香豆酸的提取………………………………….8
2.1.3 阿魏酸與香豆酸的濃縮、分離與純化………………….10
2.1.4 文獻回顧………………………………………………….12
2.2 阿魏酸及香豆酸的分析方法……………………………..15
三、 實驗部分………………………………………………….18
3.1 實驗材料與儀器………………………………………….18
3.1.1 材料與標準品…………………………………………….18
3.1.2 溶劑……………………………………………………….18
3.1.3 實驗儀器與設備………………………………………….18
3.2 實驗方法………………………………………………….20
3.2.1 阿魏酸與香豆酸的定量分析…………………………….20
3.2.2 以鹼水解法提取阿魏酸及香豆酸……………………….23
3.2.2.1 一次鹼水解法實驗步驟…………………………………. 23
A 以一次一因子法進行鹼水解條件最適化探討………….23
B 一次鹼水解法醇沉實驗步驟……………………………. 26
3.2.2.2 二次鹼水解法實驗步驟………………………………….26
3.2.3 以酸水解法提取阿魏酸及香豆酸……………………….29
3.2.3.1 一次酸水解法步驟………………………………………. 29
A 以一次一因子法進行酸水解條件最適化探討………….31
B 一次酸水解法醇沉實驗步驟……………………………. 31
3.2.3.2 二次酸水解法實驗步驟…………………………………. 33
3.2.4 鹼水解法醇沉後濃縮實驗流程………………………….33
3.2.5 液-液萃取法實驗步驟…………………………………… 36
3.2.6 以吸附劑從原料液中分離純化阿魏酸及香豆酸……….36
3.2.6.1 吸附劑前處理…………………………………………….38
3.2.6.2 批次吸附時間效應最適化探討………………………….38
3.2.6.3 吸附平衡等溫特性探討………………………………….40
3.2.6.4 批次脫附實驗…………………………………………….40
四、 結果與討論……………………………………………….45
4.1 阿魏酸與香豆酸含量分析……………………………….45
4.2 提取……………………………………………………….45
4.2.1 以鹼水解法(NaOH)提取阿魏酸與香豆酸的最適化探討……45
4.2.1.1 鹼濃度對鹼水解的影響………………………………….45
4.2.1.2 反應溫度對鹼水解的影響……………………………….45
4.2.1.3 水解時間對鹼水解的影響……………………………….49
4.2.1.4 最佳鹼水解條件的整理及製程改善…………………….49
4.2.1.5 二次鹼水解性能………………………………………….53
4.2.1.6 以最佳鹼水解條件進一步放大操作…………………….53
4.2.2 以酸水解法(Acetic acid)提取阿魏酸與香豆酸的最適化探討……53
4.2.2.1 水解時間對酸水解的影響……………………………….55
4.2.2.2 反應溫度對酸水解的影響……………………………….55
4.2.2.3 最佳酸水解條件的整理………………………………….55
4.2.2.4 二次酸水解性能………………………………………….55
4.2.2.5 以最佳酸水解條件進一步放大操作…………………….59
4.2.3 鹼水解和酸水解性能比較………………………………. 59
4.3 液液萃取…………………………………………………. 59
4.3.1 精緻鹼水解液C之不同濃縮倍數以及過濾與否對液液萃取的影響…61
4.3.2 放大操作…………………………………………………..70
4.3.3 萃取轉溶液……………………………………………….76
4.3.3.1 液液萃取轉溶液作為吸脫附實驗的原料最適化條件整理…79
4.4 分離純化………………………………………………….79
4.4.1 XAD-4 樹脂批次吸脫附實驗…………………………… 79
4.4.1.1 批次吸附時間效應……………………………………….. 79
4.4.1.2 批次吸附平衡等溫線建立……………………………….. 79
4.4.1.3 最佳批次吸附條件的整理……………………………….. 83
4.4.1.4 以不同溶劑為脫附液進行脫附…………………………..83
4.4.1.5 以不同溶劑組成為脫附液進行階段脫附………………..83
4.4.2 XAD-7HP樹脂批次吸脫附實驗………………………… 87
4.4.2.1 批次吸附時間效應………………………………………..90
4.4.2.2 批次吸附平衡等溫線建立……………………………….. 90
4.4.2.3 最佳批次吸附條件的整理……………………………….. 90
4.4.2.4 以不同溶劑為脫附液進行脫附…………………………..90
4.4.2.5 以不同溶劑組成為脫附液進行階段脫附………………..96
4.4.3 活性碳批次吸脫附實驗………………………………….. 100
4.4.3.1 最佳批次吸附條件的整理………………………………...100
4.4.3.2 以不同溶劑組成為脫附液進行階段脫附………………...100
4.4.4 三種吸附劑批次吸附與脫附性能比較…………………...104
五、 結論……………………………………………………….111
參考文獻 …………………………………………………………….113
自述 …………………………………………………………….117

蕭名傑,陳怡雯,賴世明,“應用製備級液相層析術於天然藥物的濃縮與純化,”化工,第50卷,第5期,2003。
吳立軍,2006,中藥化學,科技圖書出版社。
葛麗花,“阿魏酸低聚糖的製備及其抗氧化性質的研究,”東北林業大學林學院博士
論文,2007。
廖律,“米糠中阿魏酸的提取分離與測定研究,”中南大學化學與化工學院碩士論文,2007。
白惇婷;林威凱;李宛璇;許瑋昕;賴世明,"由農業副產品分離純化阿魏酸相關的生物活性物質," 化工,第58卷,第15期,2011。
許瑋昕,由脫脂米糠的鹼水解物分離純化阿魏酸與香豆酸,雲科大化材所碩士論文,2012。
陳品羲,以結晶法自粗米油之鹼水解物分離與純化阿魏酸,雲科大化材所碩士論文,2013。
柯定億,以管柱層析法自脫脂米糠之酸水解物分離與純化阿魏酸寡糖,雲科大化材所碩士論文,2013。
Abdel-Wahab, M. H.; El-Mahdy, M. A.; Abd-Ellah, M. F.; Helal, G. K.; Khalifa, F.; Hamada, F. M. A. “Influence of p-coumaric acid on doxorubicin-induced oxidative stress in rat's heart,” Pharmacological Research, 2003, 48, 461-465.
Adams, R.; Bockstahler, T. E. “Preparation and reaction of o-hydroxycinnamic acids and esters,” J. Am. Chem. Soc. 1952, 74, 5346–5348.
Akihisa, T.; Yasukawa, K.; Yamaura, M.; Ukiya, M.; Kimura, Y.; Shimizu, N.; Arai, K. “Triterpene alcohol and sterol ferulates from rice bran and their anti-inflammatory effects,” J. Agric. Food Chem. 2000, 48, 2313–2319.
Amakura, Y.; Okada, M.; Tsuji, S.; Tonogai, Y. “Determination of phenolic acids in fruit juices by isocratic column liquid chromatography,” Journal of Chromatography A, 2000, 891, 183-188.
An, S. M.; Lee, S. I.; Choi, S. W.; Moon, S. W.; Boo, Y. C. “p-Coumaric acid, a constituent of Sasa quelpaertensis Nakai, inhibits cellular melanogenesis stimulated by _-melanocyte stimulating hormone,” British Journal of Dermatology, 2008, 159, 292-299.
Anderle, C.; Li, S. M.; Kammerer, B.; Gust, B.; Heide, L. “New aminocoumarin antibiotics derived from 4-hydroxycinnamic acid are formed after heterologous expression of a modified clorobiocin biosynthetic gene cluster,” The Journal of Antibiotics , 2007, 60, 504-510.
Bartolome, B.; Fauld, C. B.; Williamson, G. “Enzymic release of ferulic acid from barley spent grain,” Journal of Cereal Science. 1997, 25, 285-288.
Bartolome, B.; Gomez-Cordoves, C. “Barley spent grain: release of hydroxycinnamic acids (ferulic and p-coumaric acids) by commercial enzyme preparations,” J. Sci. Food Agri. 1999, 79, 435-439.
Bartolome, B.; Gomez-Cordoves, C.; Sancho, A. I.; Diez, N.; Ferreir, P.; Soliveri, J.; Copa-Patino, J. L. “Growth and release of hydroxycinnamic acids from Brewer’s spent grain by Streptomyces avermitilis CECT 3339,” Enzyme and Microbial Technology. 2003, 32, 140-144.
Bunzel, M.; Allerdings, E.; Sinwell, V.; Ralph, J.; Steinhart, H. “Cell wall hydroxycinnamates in wild rice(Zizania aquatica L.) insoluble dietary fibre,” Eur. Food. Res. Technol. 2002, 214, 482-488.
Cheng, J. C.; Dai, F.; Zhou, B.; Yang, Y.; Liu, Z. L. “Antioxidant activity of hydroxycinnamic acid derivatives in human low density lipoprotein: mechanism and structure–activity relationship,” Food Chemistry, 2007, 104, 132-139.
Couteau, D.; Mathaly, P. “Purification of ferulic acid by adsorption after enzymic release from a sugar-beet pulp extract,” Industrial Crops and Products. 1997, 6, 237-252.
Couteau, D.; Mathaly, P. “Fixed-bed purification of ferulic acid from sugar-beet pulp using activated carbon:optimization studies,” Bioresource Technology. 1998, 60, 17-25.
Da, Y. F.; Xu, P. Y. “Synthesis of trans-ferulic acid,” Chinese J. Pharm. 1997, 28, 188-189.
Fauld, C. B.; Kroon, P. A.; Saulnier, L.; Thibault, J. F.; Williamson, G. “Release of ferulic acid from maize bran and derived oligosaccharides by Aspergillus niger esterases,” Carbohydr. Polym. 1995, 27, 187-190.
Fauld, C. B.; Williamson, G. “Release of ferulic acid from wheat bran by a ferulic acid esterase (FAE-III) from Aspergillus niger,” Appl Microbiol Biotechnol. 1995, 43, 1082-1087.
Graf, E. “Antioxidant potential of ferulic acid,” Free Radical Biol. Med. 1992, 13, 436–448.
Ji, R.; Chen, Z. X.; Corvini, P. F. X.; Kappler, A.; Brune, A.; Haider, K.; Schaffer, A. “ Synthesis of [13C]- and [14C]-labeled phenolic humus and lignin monomers,” Chemosphere, 2005, 60, 1169-1181.
Kanski, J.; Aksenova, M.; Stoyanova, A.; Butterfield, D. A. “Ferulic acid antioxidant protection against hydroxyl and peroxyl radical oxidation in synaptosomal and neuronal cell culture systems in vitro: structureactivity studies,” Journal of Nutritional Biochemistry, 2002, 13, 273-281.
Katapodis, P.; Vardakou, M.; Kalogeris, E.; Kekos, D.; Macris, B.; Christakopoulos, P. “Enzymic production of a feruloyl oligosaccharide with antioxidant activity from wheat flour arabinoxylan,” European Journal of Nutrition, 2003, 42, 55-60.
Kayahara, H.; Miao, Z.; Fujiwara, G. “Synthesis and biological activities of ferulic acid derivatives,” Anticancer Res. 1999, 19, 3763–3768.
Kim, S.; Jeong, Y.; Jung, I. D.; Lee, J. S.; Lee, C. M.; Yoon, M. S.; Seong, E. Y.; Kim, J.; Lee, J. D.; Park, Y. M. “p-Coumaric acid inhibits indoleamine 2,3-dioxygenase expression in murine dendritic cell,” International Immunopharmacology, 2007, 7, 805-815.
Lequart, C.; Nuzillard, J.; Kurek, B.; Debeire, P. “Hydrolysis of wheat bran and straw by an endoxylanase: production and structural characterization of cinnamoyl-oligosaccharides,” Carbohydr. Res. 1999, 319, 102-111.
Li, K. Y.; Lai, P.; Lu, S.; Fang, Y. T.; Chen, H. H. “Optimization of acid hydrolysis conditions for feruloylated oligosaccharides from rice bran through response surface methodolgy,” J. Agric. Food Chem. 2008, 56, 8975-8978.
Liu, H.L.; Huang, X. F.; Wan, X.; Kong, L. Y. “ Biotransformation of p-coumaric acid ((2e)-3-(4-hydroxyphenyl)prop-2-enoic acid) by momordica charantia peroxidase,” Helvetica Chimica Acta , 2007, 90, 1117-1132.
Lodovici, M.; Raimondi, L.; Guglielmi, F.; Gemignani, S.; Dolara, P. “Protection against ultraviolet B-induced oxidative DNA damage in rabbit corneal-derived cells (SIRC) by p-coumaric acid,’’ Toxicology. 2003, 184,141-147.
Micard, V.; Thibault, J. F. “Oxidative gelation of sugar-beet pectins: use of laccases and hydration properties of the crosslinked pectins,” Carbohydr. Polym. 1999, 39, 265–273.
Mori, H.; Kawabata, K.; Yoshimi, N.; Tanaka, T.; Murakami, T.; Okada, T.; Murai, H. “Chemopreventive effects of ferulic acid on oral and rice germ on large bowel carcinogenesis,” Anticancer Res. 1999, 19, 3775–3778.
Mussatto, S. I.; Dragone, G.; Roberto, I. C. “Ferulic and p-coumaric acids extraction by alkaline hydrolysis of brewer’s spent grain,” Industrial Crops and Products. 2007, 25, 231-237.
Oosterveld, A.; Pol, I. E.; Beldman, G.; Voragen, A. G. J. “Isolation of feruloylated arabinans and rhamnogalacturonans from sugar beet pulp and their gel forming ability by oxidative crosslinking,” Carbohydr. Polym. 2001, 44, 9–17.
Ou, S.; Kwok, K. C. “Review ferulic acid: pharmaceutical functions, preparation and applications in foods,” J. Sci. Food Agric. 2004, 84, 1261–1269.
Ou, S.; Li, Y.; Gao, K. “A study on scavenging activity of wheat bran dietary fiber for free radical,” Acta Nutr. Sin. 1999, 21, 191–194.
Ou, S.; Luo, Y.; Xue, F.; Huang, C.; Zhang, N.; Liu, Z. “Seperation and purification of ferulic acid in alkaline-hydrolysate from sugarcane bagasse by activated charcoal adsorption/anion macroporous resin exchange chromatography,” J. Food Eng. 2007, 78, 1298-1304.
Ou, S.Y.; Luo, Y. L.; Huang, C.H.; Jackson, M. “Production of coumaric acid from sugarcane bagasse,” Innovative Food Science and Emerging Technologies,2009, 10, 253–259.
Pan, G. X.; Bolton, J. L.; Leary, G. J. “Determination of ferulic and p-coumaric acids in wheat straw and the amounts released by mild acid and alkaline peroxide treatment,” J. Agric. Food Chem. 1998, 46, 5283-5288.
Rosazza, J.; Huang, Z.; Dostal, L.; Volm, T.; Rousseau, B. “Biocatalytic transformation of ferulic acid: an abundant aromatic natural product,” J. Indust. Microbiol. 1995, 15, 457-467.
Ruthven, D. M., Principles of adsorption and adsorption processes, John Wiley and
Sons. New York.1984.
Sachan, A.; Ghosh, S.; Mitra, A. “Biotransformation of p-coumaric acid by Paecilomyces variotii,” Letters in Applied Microbiology,2006, 42, 35-41.
Saija, A.; Tomaino, A.; Trombetta, D.; Pasquale, A. D.; Uccella, N.; Barbuzzi, T.; Paolino, D.; Bonina, F. “In vitro and in vivo evaluation of caffeic and ferulic acids as topical photoprotective agents,” Int. J. Pharm. 2000, 199, 39–47.
Saulnier, L.; Vigouroux, J.; Thibault, J. F. “Isolation and partial characterization of feruloyl oligosaccharides from maize bran,” Carbohydrare Research, 1995, 272, 241-253.
Saulnier, L.; Marot, C.; Elgorriaga, M.; Bonnin, E.; Thibault, J. F. “Thermal and enzymatic treatment for the release of free ferulic acid from maize bran,” Carbohydr. Polym. 2001, 45, 269-275.
Scalbert, A.; Monties, B.; Lallemand, J. Y.; Guittet, E.; Rolando, C. “Ether linkage between phenolic acids and lignin fractions from wheat straw,” Phytochemistry. 1985, 24, 1359-1362.
Scalbert, A.; Monties, B.; Rolando, C.; Sierra-Escudero, A. “Formation of ether linkage between phenolic acids and gramineae lignin: a possible mechanism involving quinone methides,” Holzforschung. 1986, 40, 191-195.
Tilay, A.; Bule, M.; Kishenkumar, J.; Annapure, U. “Preparation of ferulic acid from agricultural wastes: Its improved extraction and purification,” J. Agric. Food Chem. 2008, 56, 7644-7648.
Torre, P.; Aliakbarina, B.; Rivas, B.; Dominguez, J.; Converti, A. “Release of ferulic acid from corn cobs by alkaline hydrolysis,” Biochemical Engineering Journal. 2008, 40, 500–506.
Vardakou, M.; Katapodis, P.; Samiotaki, M.; Kekos, D.; Panayotou, G.; Christakopoulos, P. “Mode of action of family 10 and 11 endoxylanases on water-unextractable arabinoxylan,” Biological Macromolecules, 2003, 33, 129-134.
Wilson, T. A.; Nicolosi, R. J.; Woolfrey, B.; Kritchevsky, D. “Research article: Rice bran oil and oryzanol reduce plasma lipid and lipoprotein cholesterol concentrations and aortic cholesterol ester accumulation to a greater extent than ferulic acid in hypercholesterolemic hamsters,” J. Nutr. Biochem. 2007, 18, 105–112.
Xu, F.; Sun, R. C.; Sun, J. X.; Liu, C. F.; He, B. H.; Fan, J. S. “Determination of cell wall ferulic and p-coumaric acids in sugarcane baggasse,” Anal. Chim. Acta. 2005, 552, 207–217.
Yu, P.; Maenz, D. D.; Mckinnon, J. J.; Racz, V. J.; Christensen, D. A. “Release of ferulic acid from oat hulls by Aspergillus ferulic acid esterase and Trichoderma Xylanase,” J. Agric. Food Chem. 2002, 50, 1625-1630.
Yuan, X.; Wang, J.; Yao, H. “Production of feruloyl oligosaccharides from wheat bean insoluble dietary fibre by xylanases from Bacillus subtilis,” Food Chemistry, 2006, 95, 484-492.
Zhao, J.; Ou, S.; Ding, S.; Wang, Y.; Wang,Y. “ Effect of activated charcoal treatment
of alkaline hydrolysates from sugarcane bagasse on purification of p-coumaric acid,” Chemical Engineering Research and Design, 89, 2011, 2176–2181.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top