跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.107) 您好!臺灣時間:2025/12/18 06:41
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:林芳如
研究生(外文):Fang-Ju Lin
論文名稱:鴨舌癀之抗氧化及抗酪胺酸酶活性成分指紋圖譜的建立
論文名稱(外文):The HPLC-Fingerprint on Antioxidant and Antityrosinase Activities of Phyla nodiflora
指導教授:柯宏慧
指導教授(外文):Horng-Huey Ko
學位類別:碩士
校院名稱:高雄醫學大學
系所名稱:香粧品學系碩士班
學門:醫藥衛生學門
學類:藥學學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:128
中文關鍵詞:鴨舌癀高壓液相層析指紋圖譜抗氧化酪胺酸酶
外文關鍵詞:Phyla nodifloraHPLC-fingerprintantioxidanttyrosinase
相關次數:
  • 被引用被引用:1
  • 點閱點閱:382
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
鴨舌癀為多年生草本植物,化學成分種類眾多,其中以黃酮類為主要成分。然而,植物的化學組成會受到不同地理環境及後生長因子等因素影響其一致性。因此,發展系統性的品質控管方法是必要的。本研究藉由DPPH、ABTS、黃嘌呤/黃嘌呤氧化酶及酪胺酸酶系統評估鴨舌癀之抗氧化及酪胺酸酶抑制效果並探討結構與活性之關係。另外以高壓液相層析搭配紫外/可見光偵測器的方法同時建立鴨舌癀之指紋圖譜並定量onopordin (4)及eupafolin (7)二個活性成分。鴨舌癀地上部經由管柱層析分離,共分離得到七個已知化合物,包括3,7,4'',5''-tetrahydroxy-3''-methoxyflavone (1)、nodifloretin (2)、4''- hydroxywogonin (3)、onopordin (4)、cirsiliol (5)、5,7,8,4''-tetrahydroxy-3''- methoxyflavone (6)及eupafolin (7)。其中onopordin (4)、cirsiliol (5)及eupafolin (7)因為B環上有兒茶酚結構而呈現良好的自由基清除效果。在酪胺酸酶抑制實驗,化合物4及7的抑制能力分別為熊果素的1.8倍及2.2倍。在定量分析中,二個分析物皆具有良好的線性(R2 > 0.9994)、精密度(相對標準偏差小於6.99%)及準確度。結果顯示鴨舌癀具有良好的抗氧化及酪胺酸酶抑制活性,且所發展的分析方法可作為日後鴨舌癀添加在化粧品或保健食品上定性定量的參考依據。

Phyla nodiflora (L.) Greene is a perennial herb containing various chemical constituents, which are abundant in flavonoids as major components. However, the consistency of phytochemical profile might be affected by different geography conditions and post-growth factors. Thus, a systematic quality criterion for controlling the quality of P. nodiflora is imperative. In the study, the antioxidant and antityrosinase activities of P. nodiflora were estimated by DPPH, ABTS, xanthine/xanthine oxidase, and tyrosinase systems and revealed some structure-activity relationships. Besides, a method combined with high- performance liquid chromatography (HPLC) with UV/Vis detector was developed for simultaneous chemical fingerprint and quantification of two active compounds, known as onopordin (4) and eupafolin (7). By separated with silica column chromatography, seven known compounds, 3,7,4'',5''-tetrahydroxy-3''- methoxyflavone (1), nodifloretin (2), 4''-hydroxywogonin (3), onopordin (4), cirsiliol (5), 5,7,8,4''-tetrahydroxy-3''-methoxyflavone (6), and eupafolin (7), were isolated from P. nodiflora. Onopordin (4), cirsiliol (5), and eupafolin (7) containing with catechol moiety in the ring B showed good radical scavenging abilities. In tyrosinase inhibitory assay, the activities of compounds 4 and 7 were 1.8-times and 2.2-times stronger than arbutin. In quantitative analysis, two analytes showed good linearity (R2 > 0.9994), precision (relative standard deviation < 6.99%) and accuracy. The results indicated that P. nodiflora possess good antioxidant and antityrosinase potentials and the developed fingerprint could further serve for quality and quantity of P. nodiflora added in cosmetic industry and health food.

目錄...................................................................................................... Ⅰ
圖目錄.................................................................................................. Ⅲ
表目錄.................................................................................................. Ⅴ
中文摘要................................................................................................ 1
Abstract ................................................................................................. 2
第一章 序論.......................................................................................... 3
第1-1節 前言與研究目的............................................................... 3
第1-2節 研究背景........................................................................... 9
第1-2-1項 馬鞭草科(Verbenaceae)植物介紹............................ 9
第1-2-2項 鴨舌癀(Phyla nodiflora (L.) Greene)植物介紹...... 10
第二章 材料與研究方法..................................................................... 22
第2-1節 儀器與材料..................................................................... 22
第2-2節 萃取與分離..................................................................... 26
第2-3節 化合物之物理化學性質................................................. 30
第2-4節 生物活性試驗篩選方法................................................. 35
第2-4-1項 總酚含量評估.......................................................... 35
第2-4-2項 抗氧化能力之評估.................................................. 37
第2-4-3項 酪胺酸酶活性抑制試驗.......................................... 42
第2-4-4項 酵素動力學.............................................................. 43
第2-5節 指紋圖譜......................................................................... 45
第2-6節 統計方法......................................................................... 47
第三章 結果與討論............................................................................. 48
第3-1節 化合物之結構解析......................................................... 48
第3-1-1項 3,7,4'',5''-Tetrahydroxy-3''-methoxyflavone (1)之
結構證明.................................................................. 48
第3-1-2項 Nodifloretin (2)之結構證明.................................... 51
第3-1-3項 4''-Hydroxywogonin (3)之結構證明....................... 55
第3-1-4項 Onopordin (4)之結構證明....................................... 59
第3-1-5項 Cirsiliol (5)之結構證明........................................... 63
第3-1-6項 5,7,8,4''-Tetrahydroxy-3''-methoxyflavone (6)之
結構證明................................................................... 67
第3-1-7項 Eupafolin (7)之結構證明......................................... 71
第3-2節 鴨舌癀粗抽物活性試驗結果與討論.............................. 74
第3-2-1項 鴨舌癀粗抽物總酚含量評估............................. 74
第3-2-2項 鴨舌癀粗抽物抗氧化能力試驗......................... 75
第3-2-3項 鴨舌癀粗抽物還原能力試驗............................. 80
第3-2-4項 鴨舌癀粗抽物酪胺酸酶抑制試驗..................... 81
第3-2-5項 鴨舌癀活粗抽物性試驗總結............................. 81
第3-3節 化合物活性試驗結果與討論.......................................... 83
第3-3-1項 抗氧化能力試驗結果......................................... 83
第3-3-2項 酪胺酸酶抑制試驗結果..................................... 89
第3-3-3項 酵素動力學......................................................... 91
第3-3-4項 討論..................................................................... 93
第3-4節 指紋圖譜........................................................................... 99
第3-4-1項 層析條件之探討........................................................ 99
第3-4-2項 層析方法確認.......................................................... 103
第3-4-3項 不同批次樣品比較.................................................. 105
第四章 結論......................................................................................... 107
第五章 參考文獻................................................................................. 109
第六章 附件......................................................................................... 120



[1] K. Scharffetter–Kochanek, P. Brenneisen, J. Wenk, G. Herrmann, W. Ma, L. Kuhr, C. Meewes, M. Wlaschek, Photoaging of the skin from phenotype to mechanisms, Exp. Gerontol., 2000, 35, 307-316.
[2] M. Shahriari, P. E. Kerr, K. Slade, J. E. Grant-Kels, Vitamin D and the skin, Clin. Dermatal., 2010, 28, 663-668.
[3] L. Rittie, G. J. Fisher, UV-light-induced signal cascades and skin aging, Ageing Res. Rev., 2002, 1, 705-720.
[4] Y. Xu, G. J. Fisher, Ultraviolet (UV) light irradiation induced signal transduction in skin photoaging, J. Dermatol. Sci. Suppl., 2005, 1, S1-S8.
[5] F. R. de Gruijl, H. J. van Kranen, L. H. F. Mullenders, UV-induced DNA damage, repair, mutations and oncogenic pathways in skin cancer, J. Photoch. Photobio. B, 2001, 63, 19-27.
[6] G. Prota, Recent advances in the chemistry of melanogenesis in mammals, J. Invest. Dermatol., 1980, 75, 122-127.
[7] S. Parvez, M. Kang, H. S. Chung, H. Bae, Naturally occurring tyrosinase inhibitors: mechanism and applications in skin health, cosmetics and agriculture industries, Phytother. Res., 2007, 21, 805-816.
[8] M. Sasaki, T. Horikoshi, H. Uchiwa, Y. Miyachi, Up-regulation of tyrosinase gene by nitric oxide in human melanocytes, Pigment Cell Res., 2000, 13, 248-252.
[9] Y. Dong, H. Wang, J. Cao, J. Ren, R. Fan, X. He, G. W. Smith, C. Dong, Nitric oxide enhances melanogenesis of alpaca skin melanocytes in vitro by activating the MITF phosphorylation, Mol. Cell. Biochem., 2011, 352, 255-260.
[10] I. S. Young, J. V. Woodside, Antioxidants in health and disease, J. Clin. Pathol., 2001, 54, 176-186.
[11] M. Valko, D. Leibfritz, J. Moncol, M. T. D. Cronin, M. Mazur, J. Telser, Free radicals and antioxidants in normal physiological functions and human disease, Int. J. Biochem. Cell B., 2007, 39, 44-84.
[12] J. W. Finley, A. N. Kong, K. J. Hintze, E. H. Jeffery, L. L. Ji, X. G. Lei, Antioxidants in foods: State of the science important to the food industry, J. Agric. Food Chem., 2011, 59, 6837-6846.
[13] R. Barale, A. Marrazzini, C. Betti, V. Vangelisti, N. Lopricno, I. Barrai, Genotoxicity of two metabolites of benzene: phenol and hydroquinone show strong synergistic effects in vivo, Mutat. Res., 1990, 244, 15-20.
[14] G. H. Findlay, H. A. de Beer, Chronic hydroquinone poisoning of the skin from skin-lightening cosmetics, A south african epidemic of ochronosis of the face in dark-skinned individuals, S. Afr. Med. J., 1980, 57, 187-190.
[15] M. Nakagawa, K. Kawai, K. Kawai, Contact allergy to kojic acid in skin care products, Contact Dermatitis, 1995, 32, 9-13.
[16] A. Ness, M. Egger, G. D. Smith, Role of antioxidant vitamins in prevention of cardiovascular diseases. Meta-analysis seems to exclude benefit of vitamin C supplementation, Br. Med. J., 1999, 319, 577.
[17] Y. Dotan, I. Pinchuk, D. Lichtenberg, M. Leshno, Decision analysis supports the paradigm that indiscriminate supplementation of vitamin E does more harm than good, Arterioscler. Thromb. Vasc. Biol., 2009, 29, 1304-1309.
[18] 李時珍, 本草綱目, 普林特斯資訊有限公司, 台北, 2008, (a) p 406 (b) p 165 (c) p 263.
[19] S. Deng, B. J. West, C. J. Jensen, A quantitative comparison of phytochemical components in global noni fruits and their commercial products, Food Chem., 2010, 122, 267-270.
[20] World Health Organization, Guidelines for the assessment of herbal medicines, WHO, Munich, Geneva, 1991.
[21] State Food Drug Administration of China, Technical requirements for the development of fingerprints of TCM injections, SFDA, Beijing, 2000.
[22] http://www.ccmp.gov.tw/public/public.asp?selno=1254&relno
=1254&level=C
[23] X. F. Jin, Y. H. Lu, D. Z. Wei, Z. T. Wang, Chemical fingerprint and quantitative analysis of Salvia plebeia R. Br. by high-performance liquid chromatography, J. Pharmaceut. Biomed. Anal., 2008, 48, 100-104.
[24] C. Tistaert, B. Dejaegher, Y. V. Heyden, Chromatographic separation techniques and data handling methods for herbal fingerprints: A review, Anal. Chim. Acta., 2011, 690, 148-161.
[25] M. W. Dong, Modern HPLC for practicing scientists, Wiley- Interscience, New Jwesey, 2006, p 4.
[26] Y. P. Yang, S. Y. Lu, T. T. Chen, Verbenaceae in Flora of Taiwan. 2nd ed. Editorial committee of the Flora of Taiwan, Taipei, 1998, Vol. 4, p 403-421.
[27] 鄭漢臣, 孫啟時, 余國奠, 張浩, 張漢明, 陳虎彪, 潘勝利 藥用植物學(第三版), 文光圖書有限公司, 台北, 2004, 254-255.
[28] 鄭武燦, 台灣植物圖鑑, 茂昌圖書有限公司, 台北, 2000, 986.
[29] 李幸祥, 藥草圖鑑事典, 旺文社股份有限公司, 台北, 2007, 172-173.
[30] K. R. Shanmugasundaram, P. G. Seethapathy, E. R. B. Shanmugasundaram, Anna pavala sindhooram an antiatherosclerotic Indian drug, J. Ethnopharmacol., 1983, 7, 247-265.
[31] A. M. Forestieri, M. T. Monforte, S. Ragusa, A. Trovato, Antiinflammatory, analgesic and antipyretic activity in rodents of plant extracts used in African medicine, Phytother. Res., 1996, 10, 100-106.
[32] K. Balakrishna, R. Hamsaveni Gopal, V. Ramkumar, R. Bhima Rao, S. Vasanth, D. Narayanappa, Antibacterial activity of the essential oil of Lippia nodiflora, Ancient Sci. Life, 1996, 17, 79-81.
[33] F. Ahmed, M. S. T. Selim, A. K. Das, M. S. K. Choudhuri, Anti-inflammatory and antinociceptive activities of Lippia nodiflora Linn., Pharmazie., 2004, 59, 329-330.
[34] Y. C. Wang, T. L. Huang, Screening of anti-Helicobacter pylori herbs deriving from Taiwanese folk medicinal plants, FEMS Immunol. Med. Mic., 2005, 43, 295-300.
[35] A. K. Durairaj, T. S. Vaiyapuri, U. K. Mazumder, M. Gupta, Antimicrobial and lipid peroxide scavenging activity of Lippia nodiflora (Verbenaceae), Pharmacologyonline, 2007, 3, 177-189.
[36] A. K. Durairaj, T. S. Vaiyapuri,, U. K. Mazumder, M. Gupta, Protective activity and antioxidant potential of Lippia nodiflora extract in paracetamol induced hepatotoxicity in rats, Iran. J. Pharmacol. Therap., 2008, 7, 83-89.
[37] S. Shukla, A. K. Saluja, S. S. Pandya, In-vitro antioxidant activity of aerial parts of Lippia nodiflora Rich., Pharmacologyonline, 2009, 2, 450-459.
[38] S. Shukla, R. Patel, R. Kukkar, Study of phytochemical and diuretic potential of methanol and aqueous extracts of aerial parts of Phyla nodiflora Linn., Int. J. Pharm. Pharm. Sci., 2009, 1, 85-91.
[39] S. Dodoala, R. Diviti, B. Koganti, K. V. S. R. G. Prasad, Effect of ethanolic extract of Phyla nodiflora (Linn.) Greene against calculi producing diet induced urolithiasis, Indian J. Nat. Prod. Sci., 2010, 1, 314-321.
[40] A. O. Turaskar, S. L. Bhongade, S. M. More, A. S. Dongarwar, V. S. Shende, V. B. Pande, Effects of Lippia nodiflora extracts on motor coordination, exploratory behavior pattern, locomotor activity, anxiety and convulsions on albino mice, Asian J. Pharm. Clin. Res., 2011, 4, 133-138.
[41] A. G. R. Nair, P. Ramesh, S. Nagarajan, S. S. Subramanian, New flavone glycosides from Lippia nodiflora, Indian J. Chem., 1973, 11, 1316-1317.
[42] F. A. Tomas-Barberan, J. B. Harborne, R. Self, Twelve 6-oxygenated flavone sulphates from Lippia nodiflora and L. Canescens, Phytochemistry, 1987, 26, 2281-2284.
[43] A. K. Barua, (Miss) P. Chakrabarti, P. K. Sanyal, Nodifloretin-A new flavone from Lippia nodiflora, J. Indian Chem. Soc., 1969, 46, 271-272.
[44] F. Amir, W. S. Yam, K. Y. Chin, Chemical constituents and biological applications of Lippia nodiflora, Arch. Pharm. Pract., 2011, 2, 101-105.
[45] V. Ravikanth, P. Ramesh, P. V. Diwan, Y. Venkateswarlu, Halleridone and hallerone from Phyla nodiflora as taxonomic markers, Biochem. Syst. Ecol., 2000, 28, 905-906.
[46] H. Rimpler, H. Sauerbier, Iridoid glucosides as taxonomic markers in the genera Lantana, Lippia, Aloysia and Phyla, Biochem. Syst. Ecol., 1986, 14, 307-310.
[47] S. D. Elakovich, K. L. Stevens, Volatile constituents of Lippia nodiflora, J. Nat. Prod., 1984, 48, 504-506.
[48] B. S. Siddiqui, F. Ahmad, F. A. Sattar, S. Begum, Chemical constituents from the aerial parts of Lippia nodiflora Linn., Arch. Pharm. Res., 2007, 30, 1507-1510.
[49] B. S. Siddiqui, F. Ahmed, S. K. Ali, S. Perwaiz, S. Begum, Steroidal constituents from the aerial parts of Lippia nodiflora Linn., Nat. Prod. Res., 2009, 23, 436-441.
[50] Y. C. Lin, C. M. Hung, J. C. Tsai, J. C. Lee, Y. L. S. Chen, C. W. Wei, J. Y. Kao, T. D. Way, Hispidulin potently inhibits human glioblastoma multiforme cells through activation of AMP-activated protein kinase (AMPK), J. Agri. Food Chem., 2010, 58, 9511-9517.
[51] M. L. Ferrandiz, G. Bustos, M. Paya, R. Gunasegaran, M. J. Alcaraz, Hispidulin protection against hepatotoxicity induced by bromobenzene in mice, Life Sci., 1994, 55, 145-150.
[52] M. J. Kim, J. M. Han, Y. Y. Jin, N. I. Baek, M. H. Bang, H. G. Chung, M. S. Choi, K. T. Lee, D. E. Sok, T. S. Jeong, In vitro antioxidant and anti-inflammatory activities of jaceosidin from Artemisia princeps Pampanini cv. Sajabal, Arch. Pharm. Res., 2008, 31, 429-437.
[53] S. W. Min, N. J. Kim, N. I. Baek, D. H. Kim, Inhibitory effect of eupatilin and jaceosidin isolated from Artemisia princeps on carrageenan-induced inflammation in mice, J. Ethnopharmacol., 2009, 125, 497-500.
[54] M. J. Kim, D. H. Kim, K. W. Lee, D. Y. Yoon, Y. J. Surh, Jaceosidin induces apoptosis in ras-transformed human breast epithelial cells through generation of reactive oxygen species, Ann. N. Y. Acad. Sci., 2007, 1095, 483-495.
[55] T. Herrerias, B. H. de Oliveira, M. A. B. Gomes, M. B. M. de Oliveira, E. G. S. Carnieri, S. M. S. C. Cadena, G. R. Martinez, M. E. M. Rocha, Eupafolin: Effect on mitochondrial energetic metabolism, Bioorg. Med. Chem., 2008, 16, 854-861.
[56] A. Delazar, A. Sabzevari, M. Mojarrab, H. Nazemiyeh, S. Esnaashari, L. Nahar, S. M. Razavi, S. D. Sarker, Free-radical-scavenging principles from Phlomis caucasica. J. Nat. Med., 2008, 62, 464-466.
[57] H. S. Song, S. S. Sim, Acetoside inhibits α-MSH-induced melanin production in B16 melanoma cells by inactivation of adenyl cyclase, J. Pharm. Pharm., 2009, 61, 1347-1351.
[58] C. H. Chen, T. Y. Song, Y. C. Liang, M. L. Hu, Acteoside and 6-O- acetylacteoside downregulate cell adhesion molecules induced by IL-1β through inhibition of ERK and JNK in human vascular endothelial cells, J. Agric. Food Chem., 2009, 57, 8852-8859.
[59] N. Balasundram, K. Sundram, S. Samman, Phenolic compounds in plants and agri-industrial by-products: Antioxidant activity, occurrence, and potential uses, Food Chem., 2006, 99, 191-203.
[60] J. Javanmardi, C. Stushnoff, E. Locke, J. M. Vivanco, Antioxidant activity and total phenolic content of Iranian Ocimum accessions, Food Chem., 2003, 83, 547-550.
[61] A. W. Boots, G. R. Haenen, A. Bast, Health effects of quercetin: from antioxidant to nutraceutical, Eur. J. Pharmacol., 2008, 585, 325-337.
[62] S. Sahreen, M. R. Khan, R. A. Khan, Evaluation of antioxidant activities of various solvent extracts of Carissa opaca fruits, Food Chem., 2010, 122, 1205-1211.
[63] A. Floegel, D. O. Kim, S. J. Chung, S. I. Koo, O. K. Chun, Comparison of ABTS/DPPH assays to measure antioxidant capacity in popular antioxidant-rich US foods, J. Food Compos. Anal., 2011, 24, 1043-1048.
[64] R. Re, N. Pellegrini, A. Proteggente, A. Pannala, M. Yang, C. Rice-Evans, Antioxidant activity applying an improved ABTS radical cation decolorization assay, Free Radical Bio. Med., 1999, 26, 1231-1237.
[65] H. H. Ko, W. L. Chang, T. M. Lu, Antityrosinase and antioxidant effects of ent-kaurane diterpenes from leaves of Broussonetia papyrifera, J. Nat. Prod., 2008, 71, 1930-1933.
[66] T. S. Chang, An updated review of tyrosinase inhibitors, Int. J. Mol. Sci., 2009, 10, 2440-2475.
[67] T. J. Mabry, K. R. Markham, M. B. Thomas, The systematic identification of flavonoids, Springer-Verlag, Berlin, 1970, 55, 41.
[68] 王憲楷, 趙守訓, 潘德濟, 張如意, 姚新生, 天然藥物化學, 人民衛生出版社, 北京, 1986, 291-300.
[69] M. A. Ponce, M. J. Bompadre, J. M. Scervino, J. A. Ocampo, E. J. Chaneton, A. M. Godeas, Flavonoids, benzoic acids and cinnamic acids isolated from shoots and roots of Italian rye grass (Lolium multiflorum Lam.) with and without endophyte association and arbuscular mycorrhizal fungus, Biochem. Syst. Ecol., 2009, 37, 245-253.
[70] P. K. Agrawai, Carbon-13 NMR of flavonoids, Elsevier science publishing company Inc., New York, 1989, 123-146.
[71] 陳廣通, 高慧媛, 鄭建, 吳斌, 楊小珂, 吳立軍, 留蘭香活性部位化學成分的研究Ⅲ, 中國中藥雜誌, 2006, 31, 560-561.
[72] J. Jang, H. P. Kim, H. Park., Structure and antiinflammatory activity relationships of wogonin derivatives, Arch. Pharm. Res., 2005, 28, 877-884.
[73] Y. L. Lin, J. C. Ou, C. F. Chen, Y. H. Kuo, Flavonoids from the roots of Scutellaria luzonica Rolfe, J. Chin. Chem. Soc., 1991, 38, 619-623.
[74] T. Horie, Y. Ohtsuru, K. Shibata, K. Yamashita, M. Tsukayama, Y. Kawamura, 13C NMR spectral assignment of the A-ring of polyoxygenated flavones, Phytochemistry, 1998, 47, 865-874.
[75] T. Nagao, F. Abe, J. Kinjo, H. Okabe, Antiproliferative constituents in plants 10. Flavones from the leaves of Lantana montevidensis BRIQ. and consideration of structure-activity relationship, Biol. Pharm. Bull., 2002, 25, 875-879.
[76] S. Shukla, A. Mehta, V. K. Bajpai, S. Shukla, In vitro antioxidant activity and total phenolic content of ethanolic leaf extract of Stevia rebaudiana Bert. Food Chem. Toxicol., 2009, 47, 2338-2343.
[77] X. Zhang, J. K. Xu, J. Wang, N. L. Wang, H. Kurihara, S. Kitanaka, X. S. Yao, Bioactive bibenzyl derivatives and fluorenones from Dendrobium nobile, J. Nat. Prod., 2007, 70, 24-28.
[78] M. Wang, J. Li, M. Rangarajan, Y. Shao, E. J. LaVoie, T. C. Hung, C. T. Ho, Antioxidative phenolic compounds from Sage (Salvia officinalis), J. Agric. Food Chem., 1998, 46, 4869-4873.
[79] K. E. Heim, A. R. Tagliaferro, D. J. Bobilya, Flavonoid antioxidants: chemistry, metabolism and structure-activity relationships, J. Nutr. Biochem., 2002, 13, 572-584.
[80] J. M. Gebicki, B. H. J. Bielski, Comparison of the capacities of the perhydroxyl and the superoxide radicals to initiate chain oxidation of linoleic acid, J. Am. Chem. Soc., 1981, 103, 7020-7022.
[81] M. Lodovici, F. Guglielmi, C. Casalini, M. Meoni, V. Cheynier, P. Dolara, Antioxidant and radical scavenging properties in vitro of polyphenolic extracts from red wine, Eur. J. Nutr., 2001, 40, 74-77.
[82] 陳佩君, 鴨舌癀地上部之美白及抗氧化成分研究, 高雄醫學大學藥學系碩士班, 碩士論文, 高雄, 2009.
[83] I. Kubo, I. Kinst-Hori, S. K. Chaudhuri, Y. Kubo, Y. Sanchez, T. Ogura, Flavonols from Heterotheca inuloides: Tyrosinase inhibitory activity and structural criteria, Bioorgan. Med. Chem., 2000, 8, 1749-1755.
[84] D. Prochazkova, I. Boušova, N. Wilhelmova, Antioxidant and prooxidant properties of flavonoids, Fitoterapia, 2011, 82, 512-523.
[85] A. Arora, M. G. Nair, G. M. Strasburg, Structure-activity relationships for antioxidant activities of a series of flavonoids in a liposomal system, Free Radical Bio. Med., 1998, 24, 1355-1363.
[86] P. Cos, L. Ying, M. Calomme, J. P. Hu, K. Cimanga, B. V. Poel, L. Pieters, A. J. Vlietinck, D. V. Berghe, Structure-activity relationship and classification of flavonoids as inhibitors of xanthine oxidase and superoxide scavengers, J. Nat. Prod., 1998, 61, 71-76.



QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top