|
1.Chiu, L., et al., Analysis of costs borne by families of patients hospitalized for stroke. Zhonghua Yi Xue Za Zhi (Taipei), 1998. 61(5): p. 267-75. 2.Chang, C.C. and Chen, C.J., Secular trend of mortality from cerebral infarction and cerebral hemorrhage in Taiwan, 1974-1988. Stroke, 1993. 24(2): p. 212-8. 3.Lipton, P., Ischemic cell death in brain neurons. Physiol Rev, 1999. 79(4): p. 1431-568. 4.Duverger, D. and E.T. MacKenzie, The quantification of cerebral infarction following focal ischemia in the rat: influence of strain, arterial pressure, blood glucose concentration, and age. J Cereb Blood Flow Metab, 1988. 8(4): p. 449-61. 5.Nedergaard, M., A. Gjedde, and N.H. Diemer, Focal ischemia of the rat brain: autoradiographic determination of cerebral glucose utilization, glucose content, and blood flow. J Cereb Blood Flow Metab, 1986. 6(4): p. 414-24. 6.Zhao, W., L. Belayev, and M.D. Ginsberg, Transient middle cerebral artery occlusion by intraluminal suture: II. Neurological deficits, and pixel-based correlation of histopathology with local blood flow and glucose utilization. J Cereb Blood Flow Metab, 1997. 17(12): p. 1281-90. 7.Goldberg, M.P. and D.W. Choi, Combined oxygen and glucose deprivation in cortical cell culture: calcium-dependent and calcium-independent mechanisms of neuronal injury. J Neurosci, 1993. 13(8): p. 3510-24. 8.Hertz, L., Bioenergetics of cerebral ischemia: a cellular perspective. Neuropharmacology, 2008. 55(3): p. 289-309. 9.Schurr, A., Lactate, glucose and energy metabolism in the ischemic brain (Review). Int J Mol Med, 2002. 10(2): p. 131-6. 10.Racay, P., et al., Ischemia-Induced Mitochondrial Apoptosis is Significantly Attenuated by Ischemic Preconditioning. Cell Mol Neurobiol, 2009. 11.Kluck, R.M., et al., The release of cytochrome c from mitochondria: a primary site for Bcl-2 regulation of apoptosis. Science, 1997. 275(5303): p. 1132-6. 12.Kroemer, G., B. Dallaporta, and M. Resche-Rigon, The mitochondrial death/life regulator in apoptosis and necrosis. Annu Rev Physiol, 1998. 60: p. 619-42. 13.Yang, J., et al., Prevention of apoptosis by Bcl-2: release of cytochrome c from mitochondria blocked. Science, 1997. 275(5303): p. 1129-32. 14.McBride, H.M., M. Neuspiel, and S. Wasiak, Mitochondria: more than just a powerhouse. Curr Biol, 2006. 16(14): p. R551-60. 15.Lyden, P. and N.G. Wahlgren, Mechanisms of action of neuroprotectants in stroke. J Stroke Cerebrovasc Dis, 2000. 9(6 Pt 2): p. 9-14. 16.Camacho, A. and L. Massieu, Role of glutamate transporters in the clearance and release of glutamate during ischemia and its relation to neuronal death. Arch Med Res, 2006. 37(1): p. 11-8. 17.Benveniste, H., et al., Elevation of the extracellular concentrations of glutamate and aspartate in rat hippocampus during transient cerebral ischemia monitored by intracerebral microdialysis. J Neurochem, 1984. 43(5): p. 1369-74. 18.Takagi, K., et al., Changes in amino acid neurotransmitters and cerebral blood flow in the ischemic penumbral region following middle cerebral artery occlusion in the rat: correlation with histopathology. J Cereb Blood Flow Metab, 1993. 13(4): p. 575-85. 19.Simon, R.P., et al., Blockade of N-methyl-D-aspartate receptors may protect against ischemic damage in the brain. Science, 1984. 226(4676): p. 850-2. 20.Wahl, F., et al., Extracellular glutamate during focal cerebral ischaemia in rats: time course and calcium dependency. J Neurochem, 1994. 63(3): p. 1003-11. 21.Mitani, A. and K. Kataoka, Critical levels of extracellular glutamate mediating gerbil hippocampal delayed neuronal death during hypothermia: brain microdialysis study. Neuroscience, 1991. 42(3): p. 661-70. 22.Baker, A.J., et al., Changes in extracellular concentrations of glutamate, aspartate, glycine, dopamine, serotonin, and dopamine metabolites after transient global ischemia in the rabbit brain. J Neurochem, 1991. 57(4): p. 1370-9. 23.Miyashita, K., et al., An adenosine uptake blocker, propentofylline, reduces glutamate release in gerbil hippocampus following transient forebrain ischemia. Neurochem Res, 1992. 17(2): p. 147-50. 24.Pellegrini-Giampietro, D.E., et al., Excitatory amino acid release and free radical formation may cooperate in the genesis of ischemia-induced neuronal damage. J Neurosci, 1990. 10(3): p. 1035-41. 25.Cazevieille, C., et al., Superoxide and nitric oxide cooperation in hypoxia/reoxygenation-induced neuron injury. Free Radic Biol Med, 1993. 14(4): p. 389-95. 26.Samdani, A.F., T.M. Dawson, and V.L. Dawson, Nitric oxide synthase in models of focal ischemia. Stroke, 1997. 28(6): p. 1283-8. 27.Busse, R. and A. Mulsch, Calcium-dependent nitric oxide synthesis in endothelial cytosol is mediated by calmodulin. FEBS Lett, 1990. 265(1-2): p. 133-6. 28.Lyons, C.R., G.J. Orloff, and J.M. Cunningham, Molecular cloning and functional expression of an inducible nitric oxide synthase from a murine macrophage cell line. J Biol Chem, 1992. 267(9): p. 6370-4. 29.Tait, M.J., et al., Water movements in the brain: role of aquaporins. Trends Neurosci, 2008. 31(1): p. 37-43. 30.Song, Y., N. Sonawane, and A.S. Verkman, Localization of aquaporin-5 in sweat glands and functional analysis using knockout mice. J Physiol, 2002. 541(Pt 2): p. 561-8. 31.Verkman, A.S., Roles of aquaporins in kidney revealed by transgenic mice. Semin Nephrol, 2006. 26(3): p. 200-8. 32.Oshio, K., et al., Reduced cerebrospinal fluid production and intracranial pressure in mice lacking choroid plexus water channel Aquaporin-1. FASEB J, 2005. 19(1): p. 76-8. 33.Longatti, P., et al., Aquaporin(s) expression in choroid plexus tumours. Pediatr Neurosurg, 2006. 42(4): p. 228-33. 34.Nielsen, S., et al., Distribution of the aquaporin CHIP in secretory and resorptive epithelia and capillary endothelia. Proc Natl Acad Sci U S A, 1993. 90(15): p. 7275-9. 35.Nielsen, S., et al., Specialized membrane domains for water transport in glial cells: high-resolution immunogold cytochemistry of aquaporin-4 in rat brain. J Neurosci, 1997. 17(1): p. 171-80. 36.Rash, J.E., et al., Direct immunogold labeling of aquaporin-4 in square arrays of astrocyte and ependymocyte plasma membranes in rat brain and spinal cord. Proc Natl Acad Sci U S A, 1998. 95(20): p. 11981-6. 37.Chen, C.H., et al., Effect of osmotherapy with hypertonic saline on regional cerebral edema following experimental stroke: a study utilizing magnetic resonance imaging. Neurocrit Care, 2007. 7(1): p. 92-100. 38.Meng, S., et al., Correspondence of AQP4 expression and hypoxic-ischaemic brain oedema monitored by magnetic resonance imaging in the immature and juvenile rat. Eur J Neurosci, 2004. 19(8): p. 2261-9. 39.Sun, M.C., et al., Regulation of aquaporin-4 in a traumatic brain injury model in rats. J Neurosurg, 2003. 98(3): p. 565-9. 40.Auguste, K.I., et al., Greatly impaired migration of implanted aquaporin-4-deficient astroglial cells in mouse brain toward a site of injury. FASEB J, 2007. 21(1): p. 108-16. 41.Saadoun, S., et al., Involvement of aquaporin-4 in astroglial cell migration and glial scar formation. J Cell Sci, 2005. 118(Pt 24): p. 5691-8. 42.Badaut, J. and L. Regli, Distribution and possible roles of aquaporin 9 in the brain. Neuroscience, 2004. 129(4): p. 971-81. 43.Amiry-Moghaddam, M., et al., Brain mitochondria contain aquaporin water channels: evidence for the expression of a short AQP9 isoform in the inner mitochondrial membrane. FASEB J, 2005. 19(11): p. 1459-67. 44.Frydenlund, D.S., et al., Temporary loss of perivascular aquaporin-4 in neocortex after transient middle cerebral artery occlusion in mice. Proc Natl Acad Sci U S A, 2006. 103(36): p. 13532-6. 45.Badaut, J., et al., Distribution of Aquaporin 9 in the adult rat brain: preferential expression in catecholaminergic neurons and in glial cells. Neuroscience, 2004. 128(1): p. 27-38. 46.Badaut, J., et al., Aquaporin 1 and aquaporin 4 expression in human brain after subarachnoid hemorrhage and in peritumoral tissue. Acta Neurochir Suppl, 2003. 86: p. 495-8. 47.Kiening, K.L., et al., Decreased hemispheric Aquaporin-4 is linked to evolving brain edema following controlled cortical impact injury in rats. Neurosci Lett, 2002. 324(2): p. 105-8. 48.Ke, C., et al., Heterogeneous responses of aquaporin-4 in oedema formation in a replicated severe traumatic brain injury model in rats. Neurosci Lett, 2001. 301(1): p. 21-4. 49.Taniguchi, M., et al., Induction of aquaporin-4 water channel mRNA after focal cerebral ischemia in rat. Brain Res Mol Brain Res, 2000. 78(1-2): p. 131-7. 50.Guerin, C.F., L. Regli, and J. Badaut, [Roles of aquaporins in the brain]. Med Sci (Paris), 2005. 21(8-9): p. 747-52. 51.Oshio, K., et al., Aquaporin-1 deletion reduces osmotic water permeability and cerebrospinal fluid production. Acta Neurochir Suppl, 2003. 86: p. 525-8. 52.Manley, G.T., et al., Aquaporin-4 deletion in mice reduces brain edema after acute water intoxication and ischemic stroke. Nat Med, 2000. 6(2): p. 159-63. 53.Papadopoulos, M.C. and A.S. Verkman, Aquaporin-4 gene disruption in mice reduces brain swelling and mortality in pneumococcal meningitis. J Biol Chem, 2005. 280(14): p. 13906-12. 54.Papadopoulos, M.C., et al., Aquaporin-4 facilitates reabsorption of excess fluid in vasogenic brain edema. FASEB J, 2004. 18(11): p. 1291-3. 55.Yang, X.C. and D.J. Reis, Agmatine selectively blocks the N-methyl-D-aspartate subclass of glutamate receptor channels in rat hippocampal neurons. J Pharmacol Exp Ther, 1999. 288(2): p. 544-9. 56.Halaris, A. and J. Plietz, Agmatine : metabolic pathway and spectrum of activity in brain. CNS Drugs, 2007. 21(11): p. 885-900. 57.Reis, D.J. and S. Regunathan, Is agmatine a novel neurotransmitter in brain? Trends Pharmacol Sci, 2000. 21(5): p. 187-93. 58.Li, G., et al., Agmatine: an endogenous clonidine-displacing substance in the brain. Science, 1994. 263(5149): p. 966-9. 59.Otake, K., et al., Regional localization of agmatine in the rat brain: an immunocytochemical study. Brain Res, 1998. 787(1): p. 1-14. 60.Reis, D.J., X.C. Yang, and T.A. Milner, Agmatine containing axon terminals in rat hippocampus form synapses on pyramidal cells. Neurosci Lett, 1998. 250(3): p. 185-8. 61.Piletz, J.E., D.N. Chikkala, and P. Ernsberger, Comparison of the properties of agmatine and endogenous clonidine-displacing substance at imidazoline and alpha-2 adrenergic receptors. J Pharmacol Exp Ther, 1995. 272(2): p. 581-7. 62.Reynolds, I.J., Arcaine uncovers dual interactions of polyamines with the N-methyl-D-aspartate receptor. J Pharmacol Exp Ther, 1990. 255(3): p. 1001-7. 63.Choi, D.W., J.Y. Koh, and S. Peters, Pharmacology of glutamate neurotoxicity in cortical cell culture: attenuation by NMDA antagonists. J Neurosci, 1988. 8(1): p. 185-96. 64.Auguet, M., et al., Selective inhibition of inducible nitric oxide synthase by agmatine. Jpn J Pharmacol, 1995. 69(3): p. 285-7. 65.Galea, E., et al., Inhibition of mammalian nitric oxide synthases by agmatine, an endogenous polyamine formed by decarboxylation of arginine. Biochem J, 1996. 316 ( Pt 1): p. 247-9. 66.Kim, J.H., et al., Agmatine reduces infarct area in a mouse model of transient focal cerebral ischemia and protects cultured neurons from ischemia-like injury. Exp Neurol, 2004. 189(1): p. 122-30. 67.Feng, Y., J.E. Piletz, and M.H. Leblanc, Agmatine suppresses nitric oxide production and attenuates hypoxic-ischemic brain injury in neonatal rats. Pediatr Res, 2002. 52(4): p. 606-11. 68.Gilad, G.M. and V.H. Gilad, Accelerated functional recovery and neuroprotection by agmatine after spinal cord ischemia in rats. Neurosci Lett, 2000. 296(2-3): p. 97-100. 69.Gilad, G.M., et al., Agmatine treatment is neuroprotective in rodent brain injury models. Life Sci, 1996. 58(2): p. PL 41-6. 70.Yu, C.G., et al., Agmatine improves locomotor function and reduces tissue damage following spinal cord injury. Neuroreport, 2000. 11(14): p. 3203-7. 71.Olmos, G., et al., Protection by imidazol(ine) drugs and agmatine of glutamate-induced neurotoxicity in cultured cerebellar granule cells through blockade of NMDA receptor. Br J Pharmacol, 1999. 127(6): p. 1317-26. 72.Longa, E.Z., et al., Reversible middle cerebral artery occlusion without craniectomy in rats. Stroke, 1989. 20(1): p. 84-91. 73.Gartshore, G., J. Patterson, and I.M. Macrae, Influence of ischemia and reperfusion on the course of brain tissue swelling and blood-brain barrier permeability in a rodent model of transient focal cerebral ischemia. Exp Neurol, 1997. 147(2): p. 353-60. 74.Wang, Y., et al., Glial cell line-derived neurotrophic factor protects against ischemia-induced injury in the cerebral cortex. J Neurosci, 1997. 17(11): p. 4341-8. 75.Mullen, R.J., C.R. Buck, and A.M. Smith, NeuN, a neuronal specific nuclear protein in vertebrates. Development, 1992. 116(1): p. 201-11. 76.Vakili, A., H. Kataoka, and N. Plesnila, Role of arginine vasopressin V1 and V2 receptors for brain damage after transient focal cerebral ischemia. J Cereb Blood Flow Metab, 2005. 25(8): p. 1012-9. 77.Chang, M.W., M.S. Young, and M.T. Lin, An inclined plane system with microcontroller to determine limb motor function of laboratory animals. J Neurosci Methods, 2008. 168(1): p. 186-94. 78.Davis, A.A. and S. Temple, A self-renewing multipotential stem cell in embryonic rat cerebral cortex. Nature, 1994. 372(6503): p. 263-6. 79.Regunathan, S., et al., Agmatine (decarboxylated arginine) is synthesized and stored in astrocytes. Neuroreport, 1995. 6(14): p. 1897-900. 80.Abe, K., Y. Abe, and H. Saito, Agmatine suppresses nitric oxide production in microglia. Brain Res, 2000. 872(1-2): p. 141-8. 81.Huang, Z., et al., Effects of cerebral ischemia in mice deficient in neuronal nitric oxide synthase. Science, 1994. 265(5180): p. 1883-5. 82.Morrissey, J.J. and S. Klahr, Agmatine activation of nitric oxide synthase in endothelial cells. Proc Assoc Am Physicians, 1997. 109(1): p. 51-7. 83.Iadecola, C., Bright and dark sides of nitric oxide in ischemic brain injury. Trends Neurosci, 1997. 20(3): p. 132-9. 84.Regunathan, S. and J.E. Piletz, Regulation of inducible nitric oxide synthase and agmatine synthesis in macrophages and astrocytes. Ann N Y Acad Sci, 2003. 1009: p. 20-9. 85.Frigeri, A., et al., Localization of MIWC and GLIP water channel homologs in neuromuscular, epithelial and glandular tissues. J Cell Sci, 1995. 108 ( Pt 9): p. 2993-3002. 86.Ma, T., et al., Generation and phenotype of a transgenic knockout mouse lacking the mercurial-insensitive water channel aquaporin-4. J Clin Invest, 1997. 100(5): p. 957-62.
|