跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.134) 您好!臺灣時間:2025/12/20 10:22
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:張慈華
研究生(外文):TZU-HUA CHANG
論文名稱:Slug對上皮細胞生長因子受體酪胺酸激酶抑制劑抗藥性之影響
論文名稱(外文):Slug Confers Resistance to the Epidermal Growth Factor Receptor Tyrosine Kinase Inhibitor
指導教授:吳清平吳清平引用關係楊泮池楊泮池引用關係
指導教授(外文):CHIN-PYNG WUPAN-CHYR YANG
口試委員:吳清平楊泮池施金元陳惠文洪澤民
口試委員(外文):CHIN-PYNG WUPAN-CHYR YANGJIN-YUAN SHIHHUEI-WEN CHENTSE-MING HONG
口試日期:2010-12-22
學位類別:博士
校院名稱:國防醫學院
系所名稱:醫學科學研究所
學門:醫藥衛生學門
學類:醫學學類
論文種類:學術論文
論文出版年:2010
畢業學年度:99
語文別:中文
論文頁數:70
中文關鍵詞:SLUG抗細胞凋亡抗藥性
外文關鍵詞:SLUGantiapoptosisdrug resistance
相關次數:
  • 被引用被引用:0
  • 點閱點閱:413
  • 評分評分:
  • 下載下載:21
  • 收藏至我的研究室書目清單書目收藏:0
表皮生長因子受體 (EGFR)突變的非小細胞肺癌病人對EGFR酪氨酸激酶抑制劑(TKIs)反應良好,但病人最後皆產生抗藥性及復發。上皮細胞的上皮-間質轉化 (EMT) 可預測EGFR TKIs的抗藥性,但其分子機制迄今仍不清楚。本研究目標:探討細胞對gefitinib產生抗藥性時EMT調控因子的角色。方法: gefitinib敏感性細胞株(PC9)和gefitinib抗藥性細胞株(PC9/gef)用即時反轉錄聚合酶連鎖反應(RT-PCR)和西方墨點法測定EMT調控因子表現量﹔體外試驗方面,利用分子操控如過度或靜默表現等方法來研究EMT調控因子對gefitinib抗藥性的影響,體內試驗則採用活體腫瘤異種移植老鼠模式(xenograft mouse model)。另外,為了瞭解gefitinib抗藥性病人EMT調控因子mRNA的表現量,收集44個肺腺癌病人的惡性肋膜積液的癌細胞,培養後進行即時反轉錄聚合酶連鎖反應。結果: PC9/gef細胞的Slug 訊息核醣核酸和蛋白表現量明顯比PC9高,而其他調控者Snail, twist, Zeb-1 在這兩細胞株表現量類似,減弱Slug表現的PC9/gef細胞降低gefitinib抗藥性,反之,Slug過度的表現對gefitinib誘發PC9細胞凋亡提供了保護作用,減弱Slug表現的PC9/gef細胞主要透過增加Bim表現量和活化caspase 9來降低gefitinib抗藥性。Slug促進裸鼠異位移植腫瘤的生長,即使在gefitinib治療的期間。臨床檢體檢測顯示,在EGFR酪胺酸激酶抑制劑治療後比治療前,Slug 表現量顯著增加。結論,Slug促進gefitinib抗藥性產生而且未來可能成為治療肺癌、研發新藥的新標靶。
Rationale: Non-small cell lung cancers carrying epidermal growth factor receptor (EGFR) mutations respond well to EGFR tyrosine kinase inhibitors (TKIs), but patients ultimately develop drug resistance and relapse. Although epithelial-mesenchymal transition (EMT) can predict resistance to EGFR TKIs, the molecular mechanisms are still unknown.
Objectives: To examine the role of EMT regulators in resistance to gefitinib.
Methods: The expression level of EMT regulators in gefitinib-sensitive cells (PC9) and gefitinib-resistant cells (PC9/gef) was determined using quantitative real-time reverse transcription-polymerase chain reaction (RT-PCR) and Western blot analysis. Molecular manipulations (silencing or overexpression) were performed to investigate the effects of EMT regulators on gefitinib resistance in vitro, and a xenograft mouse model was used for in vivo confirmation. In addition, cancer cells from fifty-four patients with malignant pleural effusions of lung adenocarcinoma were collected for analysis of EMT regulator mRNA by quantitative real-time RT-PCR.
Results: Slug expression, but not that of snail, twist or zeb-1, was significantly increased in PC9/gef compared to PC9 cells. Slug knockdown in PC9/gef cells reversed resistance to gefitinib, and overexpression of Slug in PC9 cells protected cells from gefitinib induced-apoptosis. Silencing of Slug in gefitinib-resistant cells restored gefitinib-induced apoptosis primarily through Bim upregulation and activation of caspase-9. Slug enhanced tumor growth in a xenograft mouse model, even with gefitinib treatment. In clinical samples, Slug expression was significantly higher in cancer cells with resistance to EGFR TKIs than in treatment-naïve cancer cells.
Conclusions: Slug contributes to the resistance to gefitinib and may be a potential therapeutic target for treating resistance to EGFR TKIs.
目錄
正文目錄....................................................................................................I
中文摘要..................................................................................................III
英文摘要...................................................................................................V
正 文 目 錄
第一章 前言 1
第一節 肺癌 2
第二節 表皮生長因子受體與肺癌的關係 2
第三節 表皮生長因子受體的分子標靶藥物敏感性相關因素 4
第四節 表皮生長因子受體之分子標靶藥物的抗藥性機制 6
第五節 上皮間質轉換調節因子Slug 9
第六節研究動機 10
第二章 材料與方法 12
第一節 材料 13
第二節 藥品與試劑: 13
第三節 方法 14
第三章 實驗結果 25
第一節 建立續發抗藥性體外模式 26
第二節 PC9/gef細胞對gefitinib抗藥性非因表皮生長因子受體T790M或c-MET擴增所造成。 27
第三節 PC9/gef細胞過度表現上皮間質轉化調節因子Slug。 28
第四節 核醣核酸干擾技術(RNA interference)減弱Slug表現 29
第五節 減弱Slug可逆轉PC9/gef細胞對gefitinib的抗藥性 30
第六節 Slug保護PC9細胞不產生gefitinib誘發的細胞凋亡。 31
第七節 Slug透過降低Bim表現來抑制gefitinib誘發的細胞凋亡 32
第八節 肺癌病患的Slug在表皮生長因子受體酪胺酸激酶抑制劑產生續發抗藥性的表現量增加 34
第四章 討論 35
第五章 表 41
第六章 圖 45
第七章 參考文獻 58

1. Herbst RS, Heymach JV, Lippman SM. Lung cancer. N Engl J Med 2008;359:1367-1380.
2.Lemmon MA, Schlessinger J. Regulation of signal transduction and signal diversity by receptor oligomerization. Trends Biochem Sci 1994;19:459-463.
3.Mendelsohn J, Baselga J. Status of epidermal growth factor receptor antagonists in the biology and treatment of cancer. J Clin Oncol 2003;21:2787-2799.
4.Ono M, Kuwano M. Molecular mechanisms of epidermal growth factor receptor (egfr) activation and response to gefitinib and other egfr-targeting drugs. Clin Cancer Res 2006;12:7242-7251.
5.Nicholson RI, Gee JM, Harper ME. Egfr and cancer prognosis. Eur J Cancer 2001;37 Suppl 4:S9-15.
6.Hirsch FR, Varella-Garcia M, Bunn PA, Jr., Di Maria MV, Veve R, Bremmes RM, Baron AE, Zeng C, Franklin WA. Epidermal growth factor receptor in non-small-cell lung carcinomas: Correlation between gene copy number and protein expression and impact on prognosis. J Clin Oncol 2003;21:3798-3807.
7.Putnam EA, Yen N, Gallick GE, Steck PA, Fang K, Akpakip B, Gazdar AF, Roth JA. Autocrine growth stimulation by transforming growth factor-alpha in human non-small cell lung cancer. Surg Oncol 1992;1:49-60.
8.Rusch V, Baselga J, Cordon-Cardo C, Orazem J, Zaman M, Hoda S, McIntosh J, Kurie J, Dmitrovsky E. Differential expression of the epidermal growth factor receptor and its ligands in primary non-small cell lung cancers and adjacent benign lung. Cancer Res 1993;53:2379-2385.
9.Hirsch FR, Scagliotti GV, Langer CJ, Varella-Garcia M, Franklin WA. Epidermal growth factor family of receptors in preneoplasia and lung cancer: Perspectives for targeted therapies. Lung Cancer 2003;41 Suppl 1:S29-42.
10.Franklin WA, Veve R, Hirsch FR, Helfrich BA, Bunn PA, Jr. Epidermal growth factor receptor family in lung cancer and premalignancy. Semin Oncol 2002;29:3-14.
11.Volm M, Rittgen W, Drings P. Prognostic value of erbb-1, vegf, cyclin a, fos, jun and myc in patients with squamous cell lung carcinomas. Br J Cancer 1998;77:663-669.
12.Ohsaki Y, Tanno S, Fujita Y, Toyoshima E, Fujiuchi S, Nishigaki Y, Ishida S, Nagase A, Miyokawa N, Hirata S, Kikuchi K. Epidermal growth factor receptor expression correlates with poor prognosis in non-small cell lung cancer patients with p53 overexpression. Oncol Rep 2000;7:603-607.
13.Rusch V, Klimstra D, Venkatraman E, Pisters PW, Langenfeld J, Dmitrovsky E. Overexpression of the epidermal growth factor receptor and its ligand transforming growth factor alpha is frequent in resectable non-small cell lung cancer but does not predict tumor progression. Clin Cancer Res 1997;3:515-522.
14.D'Amico TA, Massey M, Herndon JE, 2nd, Moore MB, Harpole DH, Jr. A biologic risk model for stage i lung cancer: Immunohistochemical analysis of 408 patients with the use of ten molecular markers. J Thorac Cardiovasc Surg 1999;117:736-743.
15.Brabender J, Danenberg KD, Metzger R, Schneider PM, Park J, Salonga D, Holscher AH, Danenberg PV. Epidermal growth factor receptor and her2-neu mrna expression in non-small cell lung cancer is correlated with survival. Clin Cancer Res 2001;7:1850-1855.
16.Kris MG, Natale RB, Herbst RS, Lynch TJ, Jr., Prager D, Belani CP, Schiller JH, Kelly K, Spiridonidis H, Sandler A, Albain KS, Cella D, Wolf MK, Averbuch SD, Ochs JJ, Kay AC. Efficacy of gefitinib, an inhibitor of the epidermal growth factor receptor tyrosine kinase, in symptomatic patients with non-small cell lung cancer: A randomized trial. JAMA 2003;290:2149-2158.
17.Perez-Soler R, Chachoua A, Hammond LA, Rowinsky EK, Huberman M, Karp D, Rigas J, Clark GM, Santabarbara P, Bonomi P. Determinants of tumor response and survival with erlotinib in patients with non--small-cell lung cancer. J Clin Oncol 2004;22:3238-3247.
18.Thatcher N, Chang A, Parikh P, Rodrigues Pereira J, Ciuleanu T, von Pawel J, Thongprasert S, Tan EH, Pemberton K, Archer V, Carroll K. Gefitinib plus best supportive care in previously treated patients with refractory advanced non-small-cell lung cancer: Results from a randomised, placebo-controlled, multicentre study (iressa survival evaluation in lung cancer). Lancet 2005;366:1527-1537.
19.Lynch TJ, Bell DW, Sordella R, Gurubhagavatula S, Okimoto RA, Brannigan BW, Harris PL, Haserlat SM, Supko JG, Haluska FG, Louis DN, Christiani DC, Settleman J, Haber DA. Activating mutations in the epidermal growth factor receptor underlying responsiveness of non-small-cell lung cancer to gefitinib. N Engl J Med 2004;350:2129-2139.
20.Paez JG, Janne PA, Lee JC, Tracy S, Greulich H, Gabriel S, Herman P, Kaye FJ, Lindeman N, Boggon TJ, Naoki K, Sasaki H, Fujii Y, Eck MJ, Sellers WR, Johnson BE, Meyerson M. Egfr mutations in lung cancer: Correlation with clinical response to gefitinib therapy. Science 2004;304:1497-1500.
21.Shigematsu H, Lin L, Takahashi T, Nomura M, Suzuki M, Wistuba, II, Fong KM, Lee H, Toyooka S, Shimizu N, Fujisawa T, Feng Z, Roth JA, Herz J, Minna JD, Gazdar AF. Clinical and biological features associated with epidermal growth factor receptor gene mutations in lung cancers. J Natl Cancer Inst 2005;97:339-346.
22.Janne PA, Engelman JA, Johnson BE. Epidermal growth factor receptor mutations in non-small-cell lung cancer: Implications for treatment and tumor biology. J Clin Oncol 2005;23:3227-3234.
23.Greulich H, Chen TH, Feng W, Janne PA, Alvarez JV, Zappaterra M, Bulmer SE, Frank DA, Hahn WC, Sellers WR, Meyerson M. Oncogenic transformation by inhibitor-sensitive and -resistant egfr mutants. PLoS Med 2005;2:e313.
24.Rodenhuis S, van de Wetering ML, Mooi WJ, Evers SG, van Zandwijk N, Bos JL. Mutational activation of the k-ras oncogene. A possible pathogenetic factor in adenocarcinoma of the lung. N Engl J Med 1987;317:929-935.
25.Husgafvel-Pursiainen K, Hackman P, Ridanpaa M, Anttila S, Karjalainen A, Partanen T, Taikina-Aho O, Heikkila L, Vainio H. K-ras mutations in human adenocarcinoma of the lung: Association with smoking and occupational exposure to asbestos. Int J Cancer 1993;53:250-256.
26.Kosaka T, Yatabe Y, Endoh H, Kuwano H, Takahashi T, Mitsudomi T. Mutations of the epidermal growth factor receptor gene in lung cancer: Biological and clinical implications. Cancer Res 2004;64:8919-8923.
27.Anderson NG, Ahmad T, Chan K, Dobson R, Bundred NJ. Zd1839 (iressa), a novel epidermal growth factor receptor (egfr) tyrosine kinase inhibitor, potently inhibits the growth of egfr-positive cancer cell lines with or without erbb2 overexpression. Int J Cancer 2001;94:774-782.
28.Moasser MM, Basso A, Averbuch SD, Rosen N. The tyrosine kinase inhibitor zd1839 ("Iressa") inhibits her2-driven signaling and suppresses the growth of her2-overexpressing tumor cells. Cancer Res 2001;61:7184-7188.
29.Cully M, You H, Levine AJ, Mak TW. Beyond pten mutations: The pi3k pathway as an integrator of multiple inputs during tumorigenesis. Nat Rev Cancer 2006;6:184-192.
30.Soria JC, Lee HY, Lee JI, Wang L, Issa JP, Kemp BL, Liu DD, Kurie JM, Mao L, Khuri FR. Lack of pten expression in non-small cell lung cancer could be related to promoter methylation. Clin Cancer Res 2002;8:1178-1184.
31.Bianco R, Shin I, Ritter CA, Yakes FM, Basso A, Rosen N, Tsurutani J, Dennis PA, Mills GB, Arteaga CL. Loss of pten/mmac1/tep in egf receptor-expressing tumor cells counteracts the antitumor action of egfr tyrosine kinase inhibitors. Oncogene 2003;22:2812-2822.
32.Kobayashi S, Boggon TJ, Dayaram T, Janne PA, Kocher O, Meyerson M, Johnson BE, Eck MJ, Tenen DG, Halmos B. Egfr mutation and resistance of non-small-cell lung cancer to gefitinib. N Engl J Med 2005;352:786-792.
33.Kwak EL, Sordella R, Bell DW, Godin-Heymann N, Okimoto RA, Brannigan BW, Harris PL, Driscoll DR, Fidias P, Lynch TJ, Rabindran SK, McGinnis JP, Wissner A, Sharma SV, Isselbacher KJ, Settleman J, Haber DA. Irreversible inhibitors of the egf receptor may circumvent acquired resistance to gefitinib. Proc Natl Acad Sci U S A 2005;102:7665-7670.
34.Kosaka T, Yatabe Y, Endoh H, Yoshida K, Hida T, Tsuboi M, Tada H, Kuwano H, Mitsudomi T. Analysis of epidermal growth factor receptor gene mutation in patients with non-small cell lung cancer and acquired resistance to gefitinib. Clin Cancer Res 2006;12:5764-5769.
35.Shih JY, Gow CH, Yang PC. Egfr mutation conferring primary resistance to gefitinib in non-small-cell lung cancer. N Engl J Med 2005;353:207-208.
36.Inukai M, Toyooka S, Ito S, Asano H, Ichihara S, Soh J, Suehisa H, Ouchida M, Aoe K, Aoe M, Kiura K, Shimizu N, Date H. Presence of epidermal growth factor receptor gene t790m mutation as a minor clone in non-small cell lung cancer. Cancer Res 2006;66:7854-7858.
37.Engelman JA, Zejnullahu K, Mitsudomi T, Song Y, Hyland C, Park JO, Lindeman N, Gale CM, Zhao X, Christensen J, Kosaka T, Holmes AJ, Rogers AM, Cappuzzo F, Mok T, Lee C, Johnson BE, Cantley LC, Janne PA. Met amplification leads to gefitinib resistance in lung cancer by activating erbb3 signaling. Science 2007;316:1039-1043.
38.Wang X, Ling MT, Guan XY, Tsao SW, Cheung HW, Lee DT, Wong YC. Identification of a novel function of twist, a bhlh protein, in the development of acquired taxol resistance in human cancer cells. Oncogene 2004;23:474-482.
39.Yang AD, Fan F, Camp ER, van Buren G, Liu W, Somcio R, Gray MJ, Cheng H, Hoff PM, Ellis LM. Chronic oxaliplatin resistance induces epithelial-to-mesenchymal transition in colorectal cancer cell lines. Clin Cancer Res 2006;12:4147-4153.
40.Kajiyama H, Shibata K, Terauchi M, Yamashita M, Ino K, Nawa A, Kikkawa F. Chemoresistance to paclitaxel induces epithelial-mesenchymal transition and enhances metastatic potential for epithelial ovarian carcinoma cells. Int J Oncol 2007;31:277-283.
41.Thomson S, Buck E, Petti F, Griffin G, Brown E, Ramnarine N, Iwata KK, Gibson N, Haley JD. Epithelial to mesenchymal transition is a determinant of sensitivity of non-small-cell lung carcinoma cell lines and xenografts to epidermal growth factor receptor inhibition. Cancer Res 2005;65:9455-9462.
42.Yauch RL, Januario T, Eberhard DA, Cavet G, Zhu W, Fu L, Pham TQ, Soriano R, Stinson J, Seshagiri S, Modrusan Z, Lin CY, O'Neill V, Amler LC. Epithelial versus mesenchymal phenotype determines in vitro sensitivity and predicts clinical activity of erlotinib in lung cancer patients. Clin Cancer Res 2005;11:8686-8698.
43.Frederick BA, Helfrich BA, Coldren CD, Zheng D, Chan D, Bunn PA, Jr., Raben D. Epithelial to mesenchymal transition predicts gefitinib resistance in cell lines of head and neck squamous cell carcinoma and non-small cell lung carcinoma. Mol Cancer Ther 2007;6:1683-1691.
44.Witta SE, Gemmill RM, Hirsch FR, Coldren CD, Hedman K, Ravdel L, Helfrich B, Dziadziuszko R, Chan DC, Sugita M, Chan Z, Baron A, Franklin W, Drabkin HA, Girard L, Gazdar AF, Minna JD, Bunn PA, Jr. Restoring e-cadherin expression increases sensitivity to epidermal growth factor receptor inhibitors in lung cancer cell lines. Cancer Res 2006;66:944-950.
45.Peinado H, Olmeda D, Cano A. Snail, zeb and bhlh factors in tumour progression: An alliance against the epithelial phenotype? Nat Rev Cancer 2007;7:415-428.
46.Shih JY, Tsai MF, Chang TH, Chang YL, Yuan A, Yu CJ, Lin SB, Liou GY, Lee ML, Chen JJ, Hong TM, Yang SC, Su JL, Lee YC, Yang PC. Transcription repressor slug promotes carcinoma invasion and predicts outcome of patients with lung adenocarcinoma. Clin Cancer Res 2005;11:8070-8078.
47.Inukai T, Inoue A, Kurosawa H, Goi K, Shinjyo T, Ozawa K, Mao M, Inaba T, Look AT. Slug, a ces-1-related zinc finger transcription factor gene with antiapoptotic activity, is a downstream target of the e2a-hlf oncoprotein. Mol Cell 1999;4:343-352.
48.Inoue A, Seidel MG, Wu W, Kamizono S, Ferrando AA, Bronson RT, Iwasaki H, Akashi K, Morimoto A, Hitzler JK, Pestina TI, Jackson CW, Tanaka R, Chong MJ, McKinnon PJ, Inukai T, Grosveld GC, Look AT. Slug, a highly conserved zinc finger transcriptional repressor, protects hematopoietic progenitor cells from radiation-induced apoptosis in vivo. Cancer Cell 2002;2:279-288.
49.Wu WS, Heinrichs S, Xu D, Garrison SP, Zambetti GP, Adams JM, Look AT. Slug antagonizes p53-mediated apoptosis of hematopoietic progenitors by repressing puma. Cell 2005;123:641-653.
50.Vitali R, Mancini C, Cesi V, Tanno B, Mancuso M, Bossi G, Zhang Y, Martinez RV, Calabretta B, Dominici C, Raschella G. Slug (snai2) down-regulation by rna interference facilitates apoptosis and inhibits invasive growth in neuroblastoma preclinical models. Clin Cancer Res 2008;14:4622-4630.
51.Danial NN, Korsmeyer SJ. Cell death: Critical control points. Cell 2004;116:205-219.
52.Jackman D, Pao W, Riely GJ, Engelman JA, Kris MG, Janne PA, Lynch T, Johnson BE, Miller VA. Clinical definition of acquired resistance to epidermal growth factor receptor tyrosine kinase inhibitors in non-small-cell lung cancer. J Clin Oncol 2010;28:357-360.
53.Molina JR, Yang P, Cassivi SD, Schild SE, Adjei AA. Non-small cell lung cancer: Epidemiology, risk factors, treatment, and survivorship. Mayo Clin Proc 2008;83:584-594.
54.Rho JK, Choi YJ, Lee JK, Ryoo BY, Na, II, Yang SH, Kim CH, Lee JC. Epithelial to mesenchymal transition derived from repeated exposure to gefitinib determines the sensitivity to egfr inhibitors in a549, a non-small cell lung cancer cell line. Lung Cancer 2009;63:219-226.
55.De Craene B, Gilbert B, Stove C, Bruyneel E, van Roy F, Berx G. The transcription factor snail induces tumor cell invasion through modulation of the epithelial cell differentiation program. Cancer Res 2005;65:6237-6244.
56.Rosell R, Taron M, Reguart N, Isla D, Moran T. Epidermal growth factor receptor activation: How exon 19 and 21 mutations changed our understanding of the pathway. Clin Cancer Res 2006;12:7222-7231.
57.Wang SP, Wang WL, Chang YL, Wu CT, Chao YC, Kao SH, Yuan A, Lin CW, Yang SC, Chan WK, Li KC, Hong TM, Yang PC. P53 controls cancer cell invasion by inducing the mdm2-mediated degradation of slug. Nat Cell Biol 2009;11:694-704.
58.Zilfou JT, Spector MS, Lowe SW. Slugging it out: Fine tuning the p53-puma death connection. Cell 2005;123:545-548.
59.Haupt S, Alsheich-Bartok O, Haupt Y. Clues from worms: A slug at puma promotes the survival of blood progenitors. Cell Death Differ 2006;13:913-915.
60.Cragg MS, Kuroda J, Puthalakath H, Huang DC, Strasser A. Gefitinib-induced killing of nsclc cell lines expressing mutant egfr requires bim and can be enhanced by bh3 mimetics. PLoS Med 2007;4:1681-1689; discussion 1690.
61.Costa DB, Halmos B, Kumar A, Schumer ST, Huberman MS, Boggon TJ, Tenen DG, Kobayashi S. Bim mediates egfr tyrosine kinase inhibitor-induced apoptosis in lung cancers with oncogenic egfr mutations. PLoS Med 2007;4:1669-1679; discussion 1680.
62.Larue L, Bellacosa A. Epithelial-mesenchymal transition in development and cancer: Role of phosphatidylinositol 3' kinase/akt pathways. Oncogene 2005;24:7443-7454.
63.Chen H, Zhu G, Li Y, Padia RN, Dong Z, Pan ZK, Liu K, Huang S. Extracellular signal-regulated kinase signaling pathway regulates breast cancer cell migration by maintaining slug expression. Cancer Res 2009;69:9228-9235.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top