跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.134) 您好!臺灣時間:2025/11/14 11:35
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:孫益陸
研究生(外文):Yi-Lu Sun
論文名稱:奈米複合高分子材料、聚甲基丙烯酸甲酯添加鹽類及聚吡咯之濕度感測特性研究
論文名稱(外文):Humidity Sensing Properties of Nano Composite Polymers, Salts Doped PMMA and Polypyrrole
指導教授:林助傑
學位類別:博士
校院名稱:國立中興大學
系所名稱:化學系所
學門:自然科學學門
學類:化學學類
論文種類:學術論文
論文出版年:2007
畢業學年度:96
語文別:英文
論文頁數:167
中文關鍵詞:奈米複合高分子材料聚甲基丙烯酸甲酯聚吡濕度感測
外文關鍵詞:Nano Composite PolymersPMMAPolypyrroleHumidity Sensing
相關次數:
  • 被引用被引用:1
  • 點閱點閱:351
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
相對濕度定義為空氣中所含水蒸汽的量除以相同溫度下飽和水蒸汽的量再乘以100。濕度量測分為相對濕度範圍(%RH)與低濕量測的範圍(ppmv),本論文使用LCR電表做相對濕度範圍的量測,在低濕範圍的量測則使用石英晶體微天平 (quartz crystal microbalance; QCM),並利用分流式濕度產生器以及飽合鹽液來產生固定的濕度範圍。
阻抗式濕度感測器是將感測材料塗佈在網版印刷金電極上,而QCM濕度感測器是將感測材料塗佈在石英晶體電極上,在本論文中我們製備的濕度感測材料包含一系列的高分子複合材料:KOH/K2CO3/PMMA, poly-MAPTAC/MSMA–SiO2/MMA, TiO2 nanowires/Nafion, MWCNT/Nafion, TiO2 nanowires/PAMPS 和 PLLA -AuNP,此外也包含利用光聚合法取代傳統複雜製備方法的導電聚吡咯(polypyrrole; Ppy)來做低濕範圍的感測。
我們利用奈米材料 (TiO2 nanowires, gold nanoparticles, multi-walled carbon nanotubes) 的高表面積及較多的活性部位來提高複合膜的靈敏度;另外使用兩種不同解離常數特性的鹽類(KOH可以在低濕範圍解離,而K2CO3則在高濕度範圍解離)來修飾濕度量測的線性;並且合成Poly-MAPTAC/MSMA–SiO2複合材料可以使SiO2避免聚集沉降以及改善無機物表面與有機高分子間的穩定度,此複合材料顯示具有高靈敏度、好的線性、濕滯現象小、反應及回復時間快、耐高濕及含醇環境 (97 %RH,20% C2H5OH),並有好的長期穩定性。另外我們使用Materials Studio® 3.2版的軟體來模擬計算水分子吸附在聚吡咯表面的鍵能。
為了解釋濕度感測膜上水的吸附特性,我們利用Langmuir等溫吸附狀態方程式來討論材料塗佈在石英晶體電極上水氣的吸附動力學, 其中k1為結合速率常數(binding rate constant),k-1為脫離速率常數(dissociation rate constant),K為結合平衡常數(association constant)。
Relative humidity (RH) is defined as the ratio amount of water in the air relative to the saturation amount the air can hold at a given temperature multiplied by 100. Measurement of humidity includes relative humidity (%RH) measurement and low humidity range (ppmv) measurement. The LCR meter is utilized for relative humidity measurement, and quartz crystal (QC) microbalance (QCM) technology is applied for low humidity measurement in this thesis. The divided flow humidity generator and saturated salts humidity generator were adjusted to generate the humidity ranges that had been done in our experiments.
The impedance type humidity sensors were prepared by coating the humidity sensing materials on the screen-printed gold electrodes, and QCM humidity sensors were prepared by coating humidity sensing materials over the quartz crystal electrodes. Humidity sensing materials include a series of polymers composite materials were prepared in this thesis: KOH/K2CO3/PMMA, poly-MAPTAC/MSMA–SiO2/MMA, TiO2 nanowires/Nafion, MWCNT/Nafion, TiO2 nanowires/PAMPS and PLLA -AuNP. In addition conducting polypyrrole (Ppy) coated over QC electrodes by photo-polymerization were also used instead of complicated synthesis methods, and applied for sensing low humidity.
The sensitivities of nanomaterials (TiO2 nanowires, gold nanoparticles, multi-walled carbon nanotubes) composite films were promoted due to their higher surfaces area and larger amounts of active sites performed. KOH can dissociate easily at low humidity levels, while dissociation of K2CO3 predominates at high humidity. The linearity would be modified by different dissociation constant characteristics. Poly-MAPTAC/ MSMA–SiO2 hybrid film provides the advantages of preventing SiO2 from coagulation or precipitation and improving the stability between the incompatible inorganic surface and organic polymers. The poly-MAPTAC/MSMA–SiO2/MMA hybrid film showed higher sensitivity, better linearity, small hysteresis, faster response and recovery time, satisfactory tolerance to high RH (97% RH) environment containing 20% C2H5OH, and with good long-term stability. The software of Materials Studio® version 3.2 was used for series of molecular simulations to calculate bond energy, towards water molecule adsorption onto the Ppy surface.
In order to elucidate the adsorption properties of the prepared humidity sensing films, the adsorption dynamics of water vapor molecules onto the materials coated on QCM were investigated. The binding rate constant k1, dissociation rate constant k-1 and association constant K is given by the equations under Langmuir isotherm adsorption conditions.
Abstract………………………………………………….……..………….i
Chapter 1. Introduction
1.1 Humidity………..……………...…………………..……………1
1.2 Humidity generators…………………………………………….4
1.2.1 Divided flow……………………………………………..4
1.2.2 Saturated salts……………………………………………5
1.2.3 Two-pressure system…………………………………….6
1.3 Humidity measurement…………………………………………8
1.4 This research…………………………………………………...11
1.4.1 Measurement equations of QCM……………………….13
1.4.2 QCM measurement system……………………………..15
References…………………………………………………………19
Chapter 2. Humidity sensor based on PMMA simultaneously doped with two different salts
2.1 Introduction……………………………………………………22
2.2 Results and discussion…………………………………………25
2.2.1 Effect of PMMA doped with single KOH………………25
2.2.2 Effect of PMMA simultaneously doped with two salts (KOH and K2CO3)………………………...……………28
2.3 Summary……………………………………………………….33
2.4 Experimental Section...………………………………………...34
2.4.1 Preparation of humidity sensors………………………...34
2.4.2 Instruments and analysis………………………………..34
References………………………………………………………….35
Chapter 3. Humidity sensing and electrical properties of hybrid films prepared from [3-(methacrylamino)propyl] trimethyl ammonium chloride, aqueous monodispersed colloidal silica and methyl methacrylate
3.1 Introduction…………………………………………………….38
3.2 Results and discussion…………...….………………………….40
3.2.1 IR spectra………………………………………………..40
3.2.2 Humidity sensing properties…………………………….42
3.2.3 Complex impedance…………………………………….52
3.3 Summary……………………………………………………….55
3.4 Experimental Section...………………………………………...57
3.4.1 Humidity sensor preparation……………………………57
3.4.2 Instruments and analysis………………………………..60
References…………………………………………………………60
Chapter 4. Composite of TiO2 nanowires and Nafion as humidity sensor material
4.1 Introduction……………………………………………………64
4.2 Results and discussion…………………………………………65
4.2.1 SEM analysis of TiO2 Nanowires……………………….65
4.2.2 Various additions of TiO2 and Nafion…………………..67
4.2.3 FTIR experimental data…………………………………70
4.2.4 Response Signal and Hysteresis Effect……..…………..73
4.2.5 Temperature Effect and Long time stability test……..…75
4.3 Summary…………………………………..…………………..78
4.4 Experimental Section...………………………………………...78
4.4.1 Fabrication of TiO2 nanowires…………………………78
4.4.2 Sensing material fabrication…………………………….79
4.4.3 Measurement system setup………………………...........80
4.4.4 FTIR Experimental………………...……………………82
References……………………………………………….…………82
Chapter 5. Novel low humidity sensor made of TiO2 nanowires/ poly(2-acrylamido-2-methylpropane sulfonate composite material film combined with quartz crystal microbalance
5.1 Introduction……………………………………………....….....85
5.2 Results and discussion…………………….……………………87
5.2.1 Microstructure characteristics of TiO2 NWs/PAMPS composite material films…….…………...………..…..87
5.2.2 Low humidity sensing properties of TiO2 NWs/PAMPS composite material films………………………...……..89
5.2.3 Adsorption properties of PAMPS films and 50 wt.% TiO2 NWs/PAMPS composite material films………………..95
5.3 Summary………………………………………...........…..……99
5.4 Experimental Section...……………………………...………..100
5.4.1 Material Preparation………………………………...…100
5.4.2 Electrode of QCM Fabrication……………...…………102
References………………………………………………………...103
Chapter 6. A low humidity sensor made of quartz crystal microbalance coated with multi-walled carbon nanotubes/Nafion composite material film
6.1 Introduction..………………………………………………….105
6.2 Results and discussion………….….…………...……………..106
6.2.1 Microstructure characteristics of MWCNTs/Nafion films………………………………………………….106
6.2.2 Low humidity sensing properties of MWCNTs/Nafion films……………………….…………….….…………109
6.2.3 Adsorption properties of Nafion, SWCNTs/Nafion and MWCNTs/Nafion films………………..…….……..…113
6.3 Summary…………………………………….………………..120
6.4 Experimental Section...……………………………………….121
6.4.1 Low Humidity Sensor Fabrication………………….…121
6.4.2 Instruments and analysis………………………………122
References…………………………………………………...124
Chapter 7. Poly(L-lactide) stabilized gold nanoparticles based QCM sensor for low humidity detection
7.1 Introduction…………………………………………………...126
7.2 Results and discussion……………………….………………..127
7.2.1 UV–vis spectroscopy……………………………….….127
7.2.2 TEM images of PLLA-AuNP and dynamic light scattering sub-micron particle size distribution analyzer………..127
7.2.3 Low humidity sensing properties of PLLA-AuNP films…………………………………………………129
7.2.4 Adsorption properties of blank, PLLA and PLLA-AuNP films………………...………………………………...134
7.3 Summary………………………………………………….…..137
7.4 Experimental Section...……………………………………….138
7.4.1 Materials and film preparation……………………...…138
7.4.2 Electrode of QCM fabrication…………………………139
7.4.3 Equipment…………………………………………..…139
References………………………………………………………...141
Chapter 8. In situ prepared polypyrrole for low humidity QCM sensor and related theoretical calculation
8.1 Introduction………………………………………………...…143
8.2 Results and discussion………………………………………..144
8.2.1 Adsorption simulation studies…………………………144
8.2.2 Low humidity sensing properties of Ppy films………..146
8.2.3 Adsorption properties of 1 and 0.1 wt.% Ppy films...…151
8.3 Summary………………………………………………...……155
8.4 Experimental Section...……………………………………….156
8.4.1 Material Preparation……………………………...……156
8.4.2 Electrode of QCM Fabrication………………...………156
8.4.3 Equipment……………………………………………..157
References………………………………………………………...159
Chapter 9. Conclusions…..…………………………………………….161
Appendix………………………………………………………….165
1.D.G. Yarkin, Sensors and Actuators B 107 (2003) 1–6.
2.F. Tailoka, D.J. Fray, R.V. Kumar, Solid State Ionics 161 (2003) 267–277.
3.P.G. Su, Y.L. Sun and C.C. Lin, Sensors and Actuators B 113 (2006) 883–886.
4.P.G. Su, Y.L. Sun, C.S. Wang and C.C. Lin, Sensors and Actuators B, 119 (2006) 483–489.
5.L. Gu, Q.-An Huang and M. Qin, Sensors and Actuators B, 99, 2-3 (2004) 491–498.
6.C. Cantalini and M. Pelino, J. Am. Ceram. Soc. 75 (1992) 546–551.
7.W. Wang and A.V. Virkar, Sens. Actuators B 98 (2004) 282–290.
8.S. P. Lee and K. J. Park, Sensors and Actuators B 35-36 (1996) 80–84.
9.K. A. Vetelino, P. R. Story, R. D. Mileham and D. W. Galipeau, Sensors and Actuators B 35-36 (1996) 91–98.
10.M. Neshkova, R. Petrova and V. Petrov, Anal. Chim. Acta 332 (1996) 93–103.
11.F.P. Delannoy, B. Sorli and A. Boyer, Sensors and Actuators B 84 (2000) 285–291.
12.L.X. Sun and T. Okada, Anal. Chim. Acta 421 (2000) 83–92.
13.S. Mintova and T. Bein, Micropor. Mesopor. Mater. 50 (2001) 159-166.
14.P.G. Su, Y.L. Sun and C.C. Lin, Talanta 69 (2006) 946–951.
15.P.G. Su, Y.L. Sun and C.C. Lin, Sensors and Actuators B 115 (2006) 338–343.
16.H.W. Chen, R.J. Wu, K.H. Chan, Y.L. Sun, P.G. Su, Sensors and Actuators B, 104 (2005) 80–84.
17.Y.L. Sun, Y.Z. Chen, R.J. Wu, M. Chavali, Y.C. Huang, P.G. Su, C.C. Lin, Sensors and Actuators B 126 (2007) 441–446.
18.Y.L. Sun, R.J. Wu, Y.C. Huang, P.G. Su, M. Chavali, Y.Z. Chen, C.C. Lin, Talanta 73 (2007) 857–861.
19.P. Kronenberg, P.K. Rastogi, P. Giaccari, H.G. Limberger, Opt. Lett., Vol. 27 Issue 16 (2002) 1385.
20.L. Xu, J.C. Fanguy, K.l Soni, S. Tao, Opt. Lett., Vol. 29 Issue 11 (2004) 1191–1193.
21.W. Kunzler, S.G. Calvert, M. Laylor, Proceedings of SPIE Volume: 5278, Sixth Pacific Northwest Fiber Optic Sensor Workshop, Editor(s): Eric Udd, Stephen T. Kreger, Jeff Bush, (2003) 86–93.
22.T.L. Yeo, T. Sun, K.T.V. Grattan, D. Parry, R. Lade, B.D. Powell, Sensors and Actuators B 110 (2005) 148–156.
23.C. Bernou, D. Rebiere, J. Pistre, Sensors and Actuators B 68 (2000) 88– 93
24.T.L. Yeo, T. Sun, K.T.V. Grattan, D. Parry, R. Lade, B.D. Powell, Sensors and Actuators B 110 (2005) 148–156.
25.Q. Wan, Q.H. Li, Y.J. Chen, T.H. Wang, X.L. He, X.G. Gao, J.P. Li, Appl. Phys. Lett. 84 (2004) 3085–3087.
26.R.J. Wu, Y.L. Sun, C.C. Lin, H.W. Chen, M. Chavali, Sensors and Actuators B 115 (2006) 198–204.
27.N. Yamazoe and Y. Shimizu, Sensors and Actuators B 10 (1986) 379–398.
28.E. Traversa, G. Gnappi, A. Montenero, G. Gusmano, Sensors and Actuators B 31 (1996) 59–70.
29.Y. Sakai, M. Matsuguchi, N. Yonesato, Electrochim. Acta 46 (2001) 1509–1514.
30.Giuseppe Casalbore-Miceli, Nadia Camaioni, Yang Li, Alessandro Martelli, Mujie-J. Yang and Alberto Zanelli, Sensors and Actuators B 105 (2005) 351–359.
31.G. Sauerbrey, Z. Phys. 155 (1959) 206–222.
32.Y. Sakai, Y. Sadaoka and M. Matsuguchi, Sensors and Actuators B, 35-36 (1996) 85-90.
33.J. Wang, B. Xu, J. Zhang, G. Liu, T. Zhang, F. Qiu, M. Zhao, J. Mater. Sci. Lett., 18 (1999) 1603-1605.
34.Y. sakai, M. Matsuguchi, T. Hurukawa, Sensors and Actuators B, 66 (2000) 135-138.
35.M. S. Gong, H. W. Rhee, M. H. Lee, Sensors and Actuators B, 73 (2001) 124-129.
36.Y. Li, M. J. Yang, Y. She, Talanta, 62 (2004) 707-712.
37.G. Casalbore-Miceli, M. Campos, G. Beggiato, Solid State Ionics 80 (1995) 239-244.
38.G. Casalbore-Miceli, N. Camaioni, M. J. Yang, M. Zhen, X. W. Zhan, A. D’Aprano, Solid State Ionics 100 (1997) 217-224.
39.G. Casalbore-Miceli, M. J. Yang, N. Camaioni, C. M. Mari, Y. Li, H. Sun, M. Ling, Solid State Ionics, 131 (2000) 311-321.
40.G. Casalbore-Miceli, M. Yang, Y. Li, N. Camaioni, A. Martelli, A. Zanelli, Sensors and Actuators B, 97 (2004) 362-368.
41.M. J. Yang, G. Casalbore-Miceli, N. Camaioni, C. M. Mari, H. Sun, Y. Li, M. Ling, J. Appl. Electrochem. 30 (2000) 753-756.
42.M. J. Yang, H. M. Sun, G. Casalbore-Miceli, N. Camaioni, C. M. Mari, Synth. Met., 81 (1996) 65-69.
43.N. Camaioni, G. Casalbore-Miceli, Y. Li, C. M. Mari, M. J. Yang, Solid State Ionics, 144 (2001) 355-359.
44.Y. Sakai, M. Matsuguchi, N. Yonesato, Electrochimica Acta, 46 (2001) 1509-1514.
45.J. Wang, B. Xu, G. Liu, Y. Liu, F. Wu, X. Li, M. Zhao, J. Mater. Sci. Lett., 17 (1998) 857-859.
46.M. Matsuguchi., A. Okamoto, Y. Sakai, Sensors and Actuators B, 94 (2003) 46–52.
47.M. Matsuguchi, S. Umeda, Y. Sadaoka, Y. Sakai, Sensors and Actuators B 49 (1998) 179-185.
48.P. G. Su, C. L. Uen, Sensors and Actuators B, 107 (2005) 317-322.
49.P. G. Su, I. C. Chen, R. J. Wu, Anal. Chim. Acta, 449 (2001) 103-109.
50.J. H. Noggle, Physical Chemistry, Scott, Foresman and Company, 1989, p.408.
51.D. R. Lide, CRC Handbook of Chemistry and Physics, 78th edition, 1997-1998, p. 5-79.
52.N. Yamazoe, Y. Shimizu, Humidity sensors: principles and applications, Sensors and Actuators 10 (1986) 379–398.
53.J.G. Fagan, V.R.W. Amarakoon, Reliability and reproducibility of ceramic sensors. Part III. Humidity sensors, Am. Soc. Bull. 72 (1993) 119–130.
54.B.M. Kulwicki, Humidity sensors, J. Am. Ceram. Soc. 74 (1991) 697–708.
55.N. Kinjo, S. Ohara, T. Sugawara, S. Tsuchitani, Humidity sensor with improved protective layering, U.S. Patent 4,473,813 (1984).
56.K. Sager, G. Gerlach, A. Schroth, Sensors and Actuators B 18–19 (1994) 85–90.
57.Y. Sakai, V.L. Sadaoka, M. Matsuguchi, Polym. Bull. 18 (1987) 501–506.
58.Y. Sakai, Y. Sadaoka, Denki Kagaku 53 (1985) 150–151.
59.Y. Sakai, Y. Sadaoka, M. Matsuguchi, V.L. Rao, J. Mater. Sci. 24 (1989) 101–104.
60.Y. Sakai, Y. Sadaoka, M. Matsuguchi, V.L. Rao, M. Kamigaki, Polymer 30 (1989) 1068–1071.
61.S. Tsuchitani, T. Sugawa, N. Kinjo, S. Ohara, Sensors and Actuators 15 (1988) 375–386.
62.K.L. Rauen, D.A. Smith, W.R. Heineman, J. Johnson, R. Seguin, P. Stoughton, Sensors and Actuators B 17 (1993) 61–68.
63.Y. Sakai, Y. Sadaoka, M. Matsuguchi, Sensors and Actuators B 35–36 (1996) 85–90.
64.B.M. Novak, Adv. Mater. 5 (1993) 422.
65.C.D. Feng, S.L. Sun, H. Wang, C.U. Segre, J.R. Stetter, Sensors and Actuators B 40 (1997) 217–222.
66.J. Wang, B. Xu, J. Zhang, G. Liu, T. Zhang, F. Qiu, M. Zhao, J. Mater. Sci. Lett. 18 (1999) 1603–1605.
67.J. Wang, Q. Lin, T. Zhang, R. Zhou, B. Xu, Sensors and Actuators B 81 (2002) 248–253.
68.J. Wang, B.K. Xu, S.P. Ruan, S.P. Wang, Mater. Chem. Phys. 78 (2003) 746–750.
69.P.G. Su, W.Y. Tsai, Sensors and Actuators B 100 (2004) 417–422.
70.P.G. Su, S.C. Huang, Sensors and Actuators B 105 (2005) 170–175.
71.Y. Li, M.J. Yang, Y. She, Talanta 62 (2004) 707–712.
72.C.W. Lee, S.W. Joo, M.S. Gong, S Sensors and Actuators B 105 (2005) 150–158.
73.C.W. Lee, H.S. Park, J.G. Kim, B.K. Choi, S.W. Joo, M.S. Gong, Sensors and Actuators B 109 (2005) 315–322.
74.C.J.T. Landry, B.K. Coltrain, D.M. Teegarden, T.E. Long, V.K. Long, Macromolecules 29 (1996) 4712–4721.
75.C.K. Chan, S.L. Peng, I.L. Chu, S.C. Ni, Polymer 42 (2001) 4189–4196.
76.Y.Y. Yu, C.Y. Chen, W.C. Chen, Polymer 44 (2003) 593–601.
77.L.E. Karlsson, B. Wessl´en, P. Jannasch, Electrochim. Acta 47 (2002) 3269–3275.
78.M. Matsuguchi, S. Umeda, Y. Sadaoka, Y. Sakai, Sensors and Actuators B 49 (1998) 179.
79.J.F. Shackelford, Introduction to Materials Science for Engineers, Macmillan, New York, 1992, pp. 138–157.
80.G. Casalbore-Miceli, M.J. Yang, N. Camaioni, C.M. Mari, Y. Li, H. Sun, M. Ling, Solid State Ionics 131 (2000) 311–321.
81.E. Quartarone, P. Mustarelli, A. Magistris, M.V. Russo, I. Fratoddi, A. Furlani, Solid State Ionics 136–137 (2000) 667–670.
82.Y.Y. Yu, W.C. Chen, Mater. Chem. Phys. 82 (2003) 388–395.
83.Y.S. Zhang, K. Yu, D.S. Jiang, Z.Q. Zhu, H.R. Geng, L.-Q. Luo, Appl. Surf. Sci. 242 (2005) 212–217.
84.Q. Wan, Q.H. Li, Y.J. Chen, T.H. Wang, X.L. He, X.G. Gao, J.P. Li, Appl. Phys. Lett. 84 (2004) 3085–3087.
85.R.J. Wu, Y.L. Sun, H.W. Chen, Chem. Sens. 20 (Suppl. B) (2004) 372–373.
86.N. Yamazoe, Y. Shimizu, Sensors and Actuators B 10 (1986) 379–398.
87.G. Montesperelli, A. Pumo, E. Traversa, G. Gusmano, A. Bearzotti, A. Montenero, G. Gnappi, Sensors and Actuators B 24–25 (1995) 705–709.
88.E. Traversa, G. Gnappi, A. Montenero and G. Gusmano, Sensors and Actuators B 31 (1996) 59-70.
89.M.K. Jain, M.C. Bhatnagar and G.L. Sharma, Sensors and Actuators B 55 (1999) 180-185.
90.K. Nitsch, B. W. Licznerski, H. Teterycz, L. J. Golonka and K. Wisniewski, Vacuum 50 (1998) 131-137.
91.G. Gusmano, A. Bianco, G. Montesperelli and E. Traversa, Electrochimica Acta 41 (1996) 1359-1368.
92.X.Y. Zhang, G.H. Li, Y.X. Jin, Y. Zhang and L.D. Zhang, Chem. Phys. Lett. 365 (2002) 300-304.
93.S.K. Pradhan, P.J. Reucroft, E. Yang and A. Dozier, J. Crystal Growth 256 (2003) 83-88.
94.T. Kasuga, M. Hiramatsu, A. Hoson, T. Sekino and K. Niihara, Adv. Mater. 11 (1999) 1307-1311.
95.C.-D. Feng, S.-L. Sun, H. Wang, C.U. Segre, J.R. Stetter, Sensors and Actuators B 40 (2–3) (1997) 217–222.
96.F. Tailoka, D.J. Fray, R.V. Kumar, Solid State Ionics 161 (2003) 267–277.
97.P.G. Su, I.C. Chen, R.J. Wu, Anal. Chim. Acta 449 (2001) 103–109.
98.C.D. Feng, S.L. Sun, H. Wang, C.U. Segre and J.R. Stetter, Sensors and Actuators B 40 (1997) 217-222.
99.L. Xu, J.C. Fanguy, K. Soni, S. Tao, Opt. Lett. 29 (2004) 1191–1193.
100.W. Kunzler, S.G. Calvert, M. Laylor, Measuring humidity and moisture with fiber optic sensors, in: E. Udd, S.T. Kreger, J. Bush (Eds.), Proceedings of the SPIE, vol. 5278, Sixth Pacific Northwest Fiber Optic Sensor Workshop, November 2003, pp. 86–93.
101.T.L. Yeo, T. Sun, K.T.V. Grattan, D. Parry, R. Lade, B.D. Powell, Sensors and Actuators B 110 (2005) 148–156.
102.Q. Hu, E. Marand, Polymer 40 (1999) 4833–4843.
103.L.H. Lee, W.C. Chen, Mater. Chem. Mater. 13 (2001) 1137–1142.
104.W.C. Chen, S.J. Lee, L.H. Lee, J.L. Lin, J. Mater. Chem. 9 (1999) 2999.
105.Y. X. Zhang, G. H. Li, Y. X. Jin, Y. Zhang, J. Zhang and L. D. Zhang, Chem. Phys. Lett. 365 (2002) 300-304.
106.M. Neshkova, R. Petrova, V. Petrov, Anal. Chim. Acta 332 (1996) 93–103.
107.C. Cantalini, M. Pelino, J. Am Ceram. Soc., 75 (1992) 546-551.
108.H. Yagi, M. Nakata, J. Ceram. Soc. Jpn., 100 (1992) 152.
109.W. P. Tai, J. H. Oh, Sensors and Actuators B, 85 (2002) 154.
110.Q. Wan, Q. H. Li, Y. J. Chen, T. H. Wang, X. L. He, X. G. Gao, J. P. Li, Appl. Phys. Lett., 84 (2004) 3085.
111.J.P. Randin and F. Züllig, Sensors and Actuators, 11 (1987) 319.
112.Y. Sakai, V.L. Sadaoka and M. Matsuguchi, Polymer Bull., 18 (1987) 501.
113.J. P. Gong, N. Komatsu, T. Nitta and Y. Osada, J. Phys. Chem., B 101 (1997) 740.
114.Y. Sakai, M. Matsuguchi and N. Yonesato, Electrochimica Acta, 46 (2001) 1509.
115.P. G. Su, I. C. Chen and R. J. Wu, Anal. Chim. Acta, 449 (2001) 103.
116.C. D. Feng, S. L. Sun, H. Wang, C. U. Segre and J. R. Stetter, Sensors and Actuators B 40 (1997) 217.
117.J. Wang, B. Xu, J. Zhang, G. Liu, T. Zhang, F. Qiu and M. Zhao, J. Mater. Sci. Lett., 18 (1999) 1603.
118.J. Wang, Q. Lin, T. Zhang, R. Zhou and B. Xu, Sensors and Actuators B 81 (2002) 248.
119.J. Wang, B. K. Xu, S. P. Ruan and S. P. Wang, Materials Chemistry and Physics, 78 (2003) 746.
120.M. B. Kulwicki, J. Am. Ceram. Soc., 74 (1991) 697.
121.R. Schaub, P. Thostrup, N. Lopez, E. Laegsgaard, I. Stensgaard, J. K. Norskov, F. Besenbacher, Phys. Rev. Lett., 87 (2001) 266104.
122.Y. Okahata, M. Kawase, K. Niikura, F. Ohtake, H. Furusawa, Y. Ebara, Anal. Chem., 70 (1998) 1288-1296.
123.Y. X. Zhang, G. H. Li, Y. X. Jin, Y. Zhang, J. Zhang and L. D. Zhang, Chem. Phys. Lett. 365 (2002) 300-304.
124.Y. He, E. L. Cussler, J. Member. Sci., 68 (1992) 43-52.
125.J. Kong, N. R. Franklin, C. Zhou, M. G. Chapline, S. Peng, K. Cho, H. Dai, Science, 287 (2000) 622-622.
126.A. Flujiwara, K. Ishii, H. Suematsu, H. Kataura, Y. Maniwa, S. Suzuki, Y. Achiba, Chem. Phys. Lett., 336 (2001) 205-211.
127.G. U. Sumanasekera, C. K. W. Adu, F. Fang, P. C. Eklund, Phys. Rev. Lett., 85 (2000) 1096-1099.
128.A. Zahab, L. Spina, P. Poncharal, Phys. Rev. B, 62 (2000) 10000-10003.
129.O. K. Varghese, P. D. Kichambre, D. Gong, K. G. Ong, E. C. Dickey, C. A. Grimes, Sensors and Actuators B, 81 (2001) 32-41.
130.P. Qi, O. Vermesh, M. Grecu, A. Javey, Q. Wang, H. Dai, S. Peng, K. J. Cho, Nano Letters 3 (2003) 347-351.
131.H. W. Chen, R. J. Wu, K. H. Chan, Y. L. Sun, P. G. Su, Sensors and Actuators B, 104 (2005) 80-84.
132.S. J. Tans, R. M. Verschuren, C. Dekker, Nature 393 (1998) 49-52.
133.L. Langer, L. Stockman, J. P. Heremans, V. Bayot, C. H. Olk, C. V. Haesendonek, Y. Bruynseraede, J. P. Issi, Electrical resistance of a carbon nanotube bundle, J. Mater. Res. 9 (1994) 927-932.
134.Q. H. Yang, P. X. Hou, S. Bai, M. Z. Wang, H. M. Cheng, Chem. Phys. Lett. 345 (2001) 18-24.
135.Y. Okahata, M. Kawase, K. Niikura, F. Ohtake, H. Furusawa, Y. Ebara, Anal. Chem. 70 (1998) 1288-1296.
136.F. P. Delannoy, B. Sorli, A. Boyer, Sensors and Actuators A, 84 (2000) 285-291.
137.I. W. Chiang, B. E. Brinson, A. Y. Huang, P. A. Willis, M.J. Bronikowski, J. L. Margrave, R. E. Smalley, R. H. Hauge, J. Phys. Chem. B 105 (2001) 8297-8301.
138.H. Itoh, K. Naka, Yoshiki Chujo, J. Am. Chem. Soc. 126 (2004) 3026–3027.
139.K. Tsutsumi, Y. Funaki, Y. Hirokawa, T. Hashimoto, Langmuir 15 (1999) 5200-5203.
140.H. Hirai, N. Yakura, Y. Seta, S. Hodoshima, Reactive and Functional Polymers 37 (1998) 121.[4] C. Yee, M. Scotti, A. Ulman, H. White, M. Rafailovich, J. Sokolov, Langmuir 15 (1995) 4314.
141.K. Esumi, A. Kameo, A. Suzuki, K. Torigoe, Colloids and Surfaces A: Physicochemical and Engineering Aspects 189 (2001) 155.
142.F. Liu, K. S.Y. Hsieh, F.H. Ko, T.C. Chu, B.T. Dai, Jpn. J. Appl. Phys. 42 (2003) 4147.
143.Y. Sato, K. Sato, K. Hosokawa, M. Maeda, Analytical Biochemistry 355 (2006) 125-131.
144.J. Liu, Y. Lu, J. Am. Chem. Soc. 125 (2003) 6642–6643.
145.Y.S. Song, G. Muthuraman, J.M. Zen, Electrochemistry Communications, 8 (2006) 1369-1374.
146.Y.L. Yang and L.H. Lo et al., Proc. IEEE Sensors 1 (2002) 511–514.
147.H. Shibata, M. Ito, M. Asakursa and K. Watanabe, IEEE Trans. Instrum. Meas. 45 (1996), pp. 564–569.
148.E.J. Connoly and P.J. French, Proc. IEEE Sensors 1 (2002) 499–502.
149.Daniel L. Feldheim, Marcel Dekker. Inc., (2002) 93-97.
150.H.Y. Chen, B.H. Huang, C.C. Lin, Macromolecules 38 (2005) 5400-5405.
151.K. Yoshino, K. Kaneto and S. Takeda, Syn. Met., 18, (1987) 741-746.
152.Brian J. Landi, Ryne P. Raffaelle, Stephanie L. Castro and Sheila G. Bailey, Prog. Photovolt: Res. Appl., Special Issue 13 (2005) 65–172.
153.Andrew A. R. Watt, David Blake, Jamie H Warner, Elizabeth A. Thomsen, Eric L. Tavenner, Halina Rubinsztein-Dunlop and Paul Meredith, J. Phys. D Appl. Phys. 38 (2005) 2006–2012.
154.A. Riul, Jr, R. R. Malmegrim, F. J. Fonseca and L. H. C. Mattoso, Biosens. Bioelec., 18 (2003) 1365-1369.
155.Fernando Musio, Mohamed E. H. Amrani and Krishna C. Persaud, Sensors and Actuators B 23 (1995) 223-226.
156.Qibing Pei and Olle Inganäs, Syn. Met., 57 (1993) 3730-3735.
157.V. Syritski, J. Reut, A. Öpik and K. Idla, Syn. Met., 102 (1999) 1326-1327.
158.A. C. Partridge, M. L. Jansen, W. M. Arnold, Mat. Sci. and Engg. C, 12 (2000) 37-42.
159.G. E. Collins, L. J. Buckley, Syn. Met., 78 (1996) 93-101.
160.Y. Li, M. J. Yang, G. Casalbore-Miceli, N. Camaioni, Syn. Met., 128 (2002) 293-298.
161.V. Syritski, J. Reut, A. Opik, K. Idla, Synth. Met. 120 (1999) 1326–1327.
162.P. Poddar, J. LWilson, H. Srikanth, S.A. Morrison, E.E. Carpenter, Nanotech., 15 (2004) S570–S574.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊