跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.176) 您好!臺灣時間:2025/09/06 02:28
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:廖詩佩
研究生(外文):Shih-Pei Liao
論文名稱:多重網格型態之逆迭代法求解非線性特徵值問題
論文名稱(外文):Multigrid-type Inverse Iteration Algorithms for Nonlinear Eigenvalue Problems
指導教授:馮潤華馮潤華引用關係
指導教授(外文):Ruenn-Hwa Ferng
學位類別:碩士
校院名稱:國立交通大學
系所名稱:應用數學系
學門:數學及統計學門
學類:數學學類
論文種類:學術論文
論文出版年:2000
畢業學年度:88
語文別:英文
中文關鍵詞:多重網格
相關次數:
  • 被引用被引用:0
  • 點閱點閱:224
  • 評分評分:
  • 下載下載:12
  • 收藏至我的研究室書目清單書目收藏:0
本論文中將探討來自於偏微分方程經離散化後所得之非線性特徵值問題。吾人結合多重網格法求解線性系統,以及網格轉換法改善逆迭代法中之初始猜測向量等技巧,提出多重網格形態之逆迭代法。並且將上述非線性特徵值問題經矩陣轉換後,應用此方法求解絕對最小之特徵值。此方法最後將應用於探討挫屈問題之穩定性。
The article is concerned with aspects of the nonlinear eigenvalue problems which arise from partial differential equation by finite difference discretization: T(λ)x=0, where
T(λ) is a n ×n matrix whose elements are analytical functions in parameter λ. We shall propose the multigrid type inverse
iteration algorithms which use the multigrid linear solver for
finding the smallest eigenvalue in magnitude of the nonlinear
eigenvalue problem and grid transform strategy for finding the
initial vector. The methods finally illustrate by numerical
results from experiments with buckling problem.
1 Introduction
2 Multigrid Methods
2.1 Basic Iterative Methods
2.1.1 Convergence of Iterative Method
2.1.2 The Jacobi Method
2.1.3 Weighted Jacobi Method
2.2.4 The Gauss-Seidel Method
2.2 General Two-Grid Method
2.2.1 Motivation and Numerical Observation
2.2.2 Two-Grid Algorithm
2.2.3 Restriction
2.2.4 Prolongation
2.3 A Complete Multigrid Method
2.3.1 Multigrid μ-cycle Scheme
2.3.2 Full Multigrid V-cycle Schemes
3 Inverse Iteration And Multigrid Inverse Iteration
3.1 Power Method
3.2 Inverse Iteration
3.3 Multigrid Inverse Iteration
3.4 Nonlinear Eigenvalue Problem
4 Application And Numerical Experiments
4.1 A Simple Experiments
4.2 Boundary Value Eigenvalue Problem
4.3 Buckling Problem
5 Conclusion
R. E. Bank, Analysis of multilevel inverse iteration procedure for eigenvalue problems, SIAM J. Numer. Anal., 19(1982), pp. 886-898.
J. H. Bramble, Multigrid Methods, Longman Scientific & Technical, New York, 1993.
W. L. Briggs, A Multigrid Tutorial, SIAM, Philadelphia, PA, 1987.
R. L. Burden, J. D. Faires, Numerical analysis, PWS-Kent Pub. Co., Boston, 1993.
Z. Cai, J. Mandel, and S. McCormick, Multigrid methods for nearly singular linear equations and eigenvalue problems,
SIAM J. Numer. Anal., 34(1997), pp 178-200.
C.-S. Chien, Secondary bifercations in the buckling problem,
J. Comput. Appl. Math., 26 (1989), pp. 277-287.
B. N. Datta, Numerical Linear Algebra and Appelications,
Brooks/Cole Pub. Co., 1995.
J. W. Demmel, Applied Numerical Linear Algebra, SIAM, Philadelphia, 1997.
G. H. Golub, and C. F. Van Loan, Matrix Computations,
Johns Hopkins University Press, Baltimore, 1983.
L. A. Hageman, D. M. Young, Applied iterative methods,
Academic Press, New York, 1981.
W. Hackbusch, Iterative solution of large sparse systems of equations, Applied Mathematical Sciences 95, Springer-Verlag, New York,1994.
W. Hackbusch, On the computation of approximate eigenvalues and eigenfunctions of elliptic operators by means of a multi-grid method, SIAM J. Numer. Anal., 16(1979), 201-215.
W. Hackbusch, Multi-Grid Methods and Applications, Springer Series in Computational Mathematics 4, Springer-Verlag, New York, 1985.
H. B. Keller, Numerical Solution of Bifurcation and Nonlinear Eigenvalue Problems,in "Applications of Bifurcation Theory", edited by P. H. Rabinowitz, Academic Press Inc., New York. San Francisco. London, 1977, pp. 359-384.
D. Kincaid, W. Cheney, Numerical analysis, Brooks/Cole Pub. Co., Pacific Grove, 1996.
J. Mandel, and S. McCormick, A multilevel Variational method for Ax=λBx on composite grids, J. Comput. Phys., 80(1989), pp442-450.
S. F. McCormick, A mesh refiniment method for Ax=λBx, Math. Comp., 36(1981), pp. 485-498.
S. F. McCormick, Multilevel adaptive methods for elliptic eigenproblems: A two-level convergence theory, SIAM J. Numer. Anal., 31(1994), pp. 1731-1745
A. Ruhe, Algorithms for the nonlinear eigenvalue problem,
SIAM J. Numer. Anal., 10(1973), pp. 674-689.
C.-I Wang, Numerical algorithms to the solutions of the eigevalue problem for λ-matrix, Dissertation, Institute of Applied Mathematics, National Tsing Hua University, 1992.
P. Wesseling, An Introduction to Multigrid Methods,
John Wiley & Sons, Chichester, 1992.
D. M. Young, Iterative solution of large linear systems,
Academic Press, New York, 1971.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top