跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.110) 您好!臺灣時間:2025/12/02 11:38
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳韋安
研究生(外文):Wei-An Chen
論文名稱:Harmony Graph: 基於社群網路之音樂內容表示模型及其在音樂視覺化和風格辨認之應用
論文名稱(外文):Harmony Graph, a Social-Network Based Model for Symbolic Music Content, and its Application to Music Visualization and Genre Classification
指導教授:鄭士康
口試委員:楊建章趙菁文沈錳坤
口試日期:2011-06-17
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:電信工程學研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2011
畢業學年度:100
語文別:英文
論文頁數:35
中文關鍵詞:音樂視覺化資訊視覺化社群網路分析風格辨識
外文關鍵詞:music visualizationinformation visualizationsocial network analysisgenre classification
相關次數:
  • 被引用被引用:0
  • 點閱點閱:284
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
音樂是有規則的時間序列, 其規則之一為和聲學。傳統和聲學規則 肇始於複音音樂,完備於主音音樂,在非調性音樂又趨於瓦解。若能 利用電腦輔助分析和聲學規則, 則可以幫助理解音樂, 甚至創造新的音 樂規則。
本論文將音樂行進之和聲取出, 並以圖論為模型, 企圖描述音樂背後 隱含的和聲規則。 將此模型視覺化, 可發現其與傳統和聲理論有不謀 而合之處。本文重點之一在於描述此模型與和聲學之異同。
此外, 利用社群網路分析之技巧, 得以擷取圖之若干特徵, 這些特徵 表現了不同音樂風格之特性。利用機器學習方法, 擷取之特徵作為資 料, 可以驗證這些特徵值的確能夠體現並分辨不同風格之音樂。

致謝 i
中文摘要 ii
1 Introduction 1
1.1 Motivation.................................. 1
1.2 KeyContribution .............................. 2
1.3 LiteratureSurveyandRelatedWorks.................... 3
1.4 ChapterOutline............................... 4
2 Music Theory Background 6
2.1 ChromaticScale............................... 6
2.2 MajorScaleandTriad............................ 7
2.3 TonalityandRulesofHarmony....................... 7
2.4 Harmonic Characteristic of Polyphonic, Homophonic, and Atonal Music . 8
2.5 HarmonicRhythmandNotationalRhythm................. 8
3 Social Network Analysis Background 10
3.1 GraphTheoryandSocialNetworkAnalysis . . . . . . . . . . . . . . . . 10
3.2 StatisticPropertiesofaNetwork ...................... 11
3.2.1 AveragePathLength ........................ 11
3.2.2 ClusterCoefficient ......................... 11
3.2.3 PowerLaw ............................. 12
4 Harmony Graph, the Model 13
4.1 DefinitionofHarmony ........................... 13
4.2 EncodingofHarmony............................ 13
4.3 ConstructionofHarmonyGraph ...................... 14
5 Results and Discussions 17
5.1 TheFiveCategories............................. 17
5.2 CorpusVisualization ............................ 17
5.3 SocialNetworkAnalysis .......................... 21
5.3.1 DegreeDistribution......................... 22
5.3.2 AveragePathLength ........................ 22
5.3.3 ClusteringCoefficient ....................... 26
5.3.4 Agglomeration ........................... 26
5.4 CorpusDistinguishing ........................... 28
6 Conclusion and Future Works 29
6.1 Conclution.................................. 29
6.2 FutureWorks ................................ 29
Bibliography 31
Appendix 33

[1] J. Cage and C. Berberian. Aria: with Fontana mix. Time, 1969.
[2] C. Callender, I. Quinn, and D. Tymoczko. Generalized voice-leading spaces. Sci-ence, 320(5874):346, 2008.
[3] W. Chan and H. Qu. A Report on Musical Structure Visualization. 2007.
[4] C.-C. Chang and C.-J. Lin. LIBSVM: a library for support vector machines, 2001. Software available at http://www.csie.ntu.edu.tw/ ̃cjlin/libsvm.
[5] J. Ellson, E. Gansner, L. Koutsofios, S. North, and G. Woodhull. Graphviz open source graph drawing tools. In Graph Drawing, pages 594–597. Springer, 2002.
[6] J. Foote. Visualizing music and audio using self-similarity. In ACM Multimedia, volume 1, pages 77–80. Citeseer, 1999.
[7] M. Keith. From polychords to polya: adventures in musical combinatorics, page 48. Vinculum Press, 1991.
[8] C. Krumhansl. The geometry of musical structure: a brief introduction and history. Computers in Entertainment (CIE), 3(4):1–14, 2005.
[9] C. McKay. Automatic genre classification of MIDI recordings. PhD thesis, Citeseer, 2004.
[10] B. Mokbel, A. Hasenfuss, and B. Hammer. Graph-based representation of symbolic musical data. Graph-Based Representations in Pattern Recognition, pages 42–51, 2009.
[11] M. E. J. Newman. The structure and function of complex networks. ArXiv Con- densed Matter e-prints, Mar. 2003.
[12] C.Sapp.Harmonicvisualizationsoftonalmusic.InProceedingsoftheInternational Computer Music Conference, volume 1001, pages 423–430. Citeseer, 2001.
[13] H. Schenker. Harmony. University of Chicago Press, 1980.
[14] M. Shan and F. Kuo. Music style mining and classification by melody. IEICE
TRANSACTIONS on Information and Systems, 86(3):655–659, 2003.
[15] J. Snydal and M. Hearst. Improviz: visual explorations of jazz improvisations. In CHI’05 extended abstracts on Human factors in computing systems, pages 1805– 1808. ACM, 2005.
[16] H. Taube. Automatic tonal analysis: Toward the implementation of a music theory workbench. Computer Music Journal, 23(4):18–32, 1999.
[17] E. Tufte and G. Howard. The visual display of quantitative information, volume 16, page 13. Graphics press Cheshire, CT, 1983.
[18] M. Wattenberg. The shape of song. Website http://www.turbulence.org/Works/song/mono.html, 2001.
[19] T. Winograd. Linguistics and the computer analysis of tonal harmony. Journal of Music Theory, 12(1):2–49, 1968.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top