|
[Brown, 1994] M. Brown and C. Harris, NeuroFuzzy Adaptive Modelling and Control, chapter 3 and 4, Prentice Hall, 1994. [Burden, 2001] R. L. Burden and J. D. Faires, Numerical analysis, 7th ed., chapter 6, Brooks/Cole, 2001. [Friedman, 1982] A. Friedman, Foundations of modern analysis, chapter 3, Dover, 1982. [Huang, 2005] G.-B. Hunag, P. Saratchandran, and N. Sundararajan, “A Generalized Growing and Pruning RBF (GGAP-RBF) Neural Network for Function Approximation,” IEEE Trans. on Neural Network, vol. 16, no. 1, pp. 57-67 January 2005. [I. N. N. C. S. Committee, 2005] I. N. N. C. S. Committee, Benchmark group on data modeling, January, 2005 [Online]. Available: http://neural.cs.nthu.edu.tw/jang/benchmark [Junkins, 1972] J. L. Junkins and J. R. Jancaitis, “Smooth irregular curves,” Photogram. Eng., vol. 38, no. 6, pp. 565–573, June. 1972. [Kadirkamanathan, 1993] V. Kadirkamanathan and M. Niranjan, “A Function Estimation Approach to Sequential Learning with Neural Networks,” Neural Computation, vol. 5 pp. 954-975, 1993. [Kaelbling, 1996] L.P. Kaelbling, M.L. Littman, and A.W. Moore, “Reinforcement Learning: A Survey,” Journal of Artificial Intelligence Research 4, pp.237-285, May, 1996. [Lendaris, 1997a] G. G. Lendaris and C. Paintz, “Training Strategies for Critic and Actor Neural Networks in Dual Heuristic Programming Method,” Proceedings of International Conference on Neural Networks’97 (ICNN’97), Houston, IEEE Press, pp. 712-717, June, 1997. [Lendaris, 1997b] G. G. Lendaris, C. Paintz, and T.T. Shannon, “More on Training Strategies for Critic and Actor neural Networks in Dual Heuristic Programming Method” (Invited Paper), Proceedings of Systems Man & Cybernetics Society International Conference’97, Orlando, IEEE Press, October, 1997. [Lendaris, 1998] G. G. Lendaris, and T. T. Shannon, “Application considerations for the DHP methodology,” in Proceedings of the International Joint Conference on Neural Networks’98 (IJCNN’98), Anchorage, IEEE Press, pp 1013-1018, March, 1998. [Lendaris, 2000] G. G. Lendaris, L. Schultz, and T. T. Shannon, “Adaptive critic design for intelligent steering and speed control of a 2-axle vehicle,” Proceedings of the IEEE-INNS-ENNS International Joint Conference on Neural Networks, 2000. IJCNN 2000, vol. 3, pp. 73-78, July 2000. [Lendaris, 2001] G. G. Lendaris, T. T. Shannon, L. J. Schultz, S. Hutsell, and A. Rogers, “Dual Heuristic Programming for Fuzzy Control,” Proceeedings of IFSA / NAFIPS Conference, Vancouver, B.C., July, 2001. [Liang, 2006] N.-Y. Liang, G.-B. Hunag, P. Saratchandran, and N. Sundararajan, “A Fast and Accurate Online Sequential Learning Algorithm for Feedforward Networks,” IEEE Trans. on Neural Network, vol. 17, no. 6, pp. 1411-1423, Nov. 2006. [Lin, 2004] W.-S. Lin, C.-L. Huang, M.-K. Chuang and G.-C. Liu, “Modeling a wheeled mobile robot for autonomous navigation design,” IASTED International Conference on Modeling, Identification and Control, pp. 275-280, Grindelwald, Switzerland, Feb. 2004 [Lin, 2007a] W.-S. Lin, L.-H. Chang, and P.-C. Yang, “Adaptive critic anti-slip control of wheeled autonomous robot,” IEE/IET Control Theory and Applications, vol. 1, issue 1, pp. 51-57, Jan. 2007 [Lin, 2007b] W.-S. Lin, P.-C. Yang, “DHP Adaptive Critic Motion Control of Autonomous Wheeled Mobile Robot,” IEEE International Symposium on Approximate Dynamic Programming and Reinforcement Learning, pp. 311-317, Honolulu, HI, USA, April 2007 [Mackey, 1977] M. C. Mackey and L. Glass, “Oscillation and chaos in physiological control systems,” Science, vol. 197, pp. 287–289, 1977. [Marsden, 1993] J. E. Marsden and M. J. Hoffman, Elementary Classical Analysis. 2nd edition, chapter 1, 4, 5, and 6, Freeman, 1993. [Negnevitsky, 2004] M. Negnevitsky, Artificial Intelligence: A Guide to Intelligent Systems, chapter 6, Addison-Wesley, 2002. [Park, 2003] J.-W. Park, R. G. Harley, and G. K. Venayagamoorthy, “Adaptive-critic-based optimal neurocontrol for synchronous generators in a power system using MLP/RBF neural networks,” IEEE trans. on Industry Applications, vol. 33, no 5, pp. 1529-1540, 2003. [Platt, 1991] J. C. Platt, “A Resource Allocating Network for Function Interpolation,” Neural Computation, vol. 3 pp. 213-225, 1991. [Prokhorov, 1995] D. Prokhorov and R. Santiago, and D. Wunsch, “Adaptive critrc designs: a case study for Neurocontrol,” Neural Networks, vol. 8, pp. 1367-1372, 1995. [Prokhorov, 1997] D. Prokhorov and D. Wunsch, “Adaptive critrc designs,” IEEE Trans. on Neural Networks, vol. 8, pp. 997-1007, Sep. 1997. [Schultz, 2001] L. J. Schultz, T. T. Shannon, and G. G. Lendaris, “Using DHP Adaptive Critic Methods to Tune a Fuzzy Automobile Steering Controller,” Proceedings of IFSA/NAFIPS Conference, Vancouver, B.C., July, 2001. [Shannon, 1999a] T. T. Shannon, “Partial , Noisy and Qualitative Models for Adaptive Critic Based Neuro-control,” Proceedings of International Conference on Neural Networks''R99 (IJCNN''99), Washington, D.C., IEEE Press, July, 1999. [Shannon, 1999b] T. T. Shannon and G. G. Lendaris, “Qualitative Models for Adaptive Critic Neurocontrol,” Proceedings of IEEE SMC''99 Conference, Tokyo, IEEE Press, October, 1999. [Shannon, 2000a] T. T. Shannon and G. G. Lendaris, “A New Hybrid Critic-Training Method for Approximate Dynamic Programming,” Proceedings of International Society for the System Sciences, ISSS''R2000, Toronto, August, 2000. [Shannon, 2000b] T. T. Shannon and G. G. Lendaris, “Adaptive Critic Based Approximate Dynamic Programming for Tuning Fuzzy Controllers,” Proceedings of IEEE-FUZZ 2000, San Antonio, Texas, IEEE Press, May, 2000. [Shannon, 2001] T. T. Shannon and G. G. Lendaris, “Adaptive Critic Based Design of a Fuzzy Motor Speed Controller,” Proceedings of ISIC2001, Mexico City, Mexico, September, 2001. [Shannon, 2003] T. T. Shannon, R. A. Santiago, and G. G. Lendaris, “Accelerated Critic Learning In Approximate Dynamic Programming via Value Templates and Perceptual Learning,” Proceedings of International Joint Conference on Neural Networks''R032 (IJCNN'' 2003), paper #775, Portland, OR, IEEE Press, July, 2003. [Si, 2001] J. Si and Y.-T. Wang, “On-Line Learning Control by Association and Reinforcement,” IEEE Trans. on Neural Networks, vol. 12, no. 2, pp. 264-276, March, 2001. [Singla, 2007] P. Singla, K. Subbarao, and J. L. Junkins, “Direction-Dependent Learning Approach for Radial Basis Function Networks,” IEEE Trans. on Neural Network, vol. 18, no. 1, pp. 203 - 222, Jan. 2007. [Venayagamoorthy, 2002] G. K. Venayagamoorthy, R. G. Harley, and D. C. Wunsch, “Comparison of heuristic dynamic programming and dual heuristic programming adaptive critics for neurocontrol of a turbogenerator,” IEEE Trans. on Neural Networks, vol. 13, no. 3, pp. 764-773, 2002. [Venayagamoorthy, 2003] G. K. Venayagamoorthy, R. G. Harley, and D. C. Wunsch, “Dual heuristic programming excitation neurocontrol for generators in a multimachine power system,” IEEE Trans. on Industry Applications, vol. 39, no. 2, pp. 382-394, 2003. [Werbos, 1977] P. J. Werbos, “Approximate dynamic programming for real-time control and neural modeling,” in Handbook of Intelligent Contorl, White and Sofge, Eds. New York: Van Nostrand Reinhold, pp. 493-525, 1992. [Werbos, 1990] P. J. Werbos, “A menu of designs for reinforcement learning over time,” Neural Networks for Control, pp. 67-95, MIT Press, Cambridge, MA, 1990. [Yan, 2000] Yan Li, N. Sundararajan, and P. Saratchandran, “Analysis of Minimal Radial Basis Function Network Algorithm for Real-Time Identification of Nonlinear Dynamic Systems,” IEE Proceedings Part D - Control Theory and Applications, UK, vol. 147, no. 4, pp. 476-484, July 2000. [Yingwei, 1997] Lu Yingwei, N. Sundararajan, and P. Saratchandran, “A Sequential Learning Scheme for Function Approximation Using Minimal Radial Basis Function Neural Networks,” Neural Computation vol. 9, pp. 461-478, 1997.
|