跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.176) 您好!臺灣時間:2025/09/06 02:30
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:林忠助
研究生(外文):Chung-Chu Lin
論文名稱:微機電寬頻開槽耦合微帶天線之設計
論文名稱(外文):Design of Micromachined Wideband Aperture Coupled Microstrip Patch Antenna
指導教授:黃榮堂黃榮堂引用關係林信標林信標引用關係
學位類別:碩士
校院名稱:國立臺北科技大學
系所名稱:機電整合研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2001
畢業學年度:89
語文別:中文
論文頁數:105
中文關鍵詞:微機電微帶天線寬頻開槽耦合
外文關鍵詞:MicromachiningMicrostrip patch antennaWidebandAperture Coupled
相關次數:
  • 被引用被引用:1
  • 點閱點閱:471
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本文旨在研究寬頻開槽耦合微帶天線之特性。首先研究開槽耦合微帶天線之基本分析理論,採用精確度較高的全波分析法作探討,研究了解整個分析的過程,其目的以作為寬頻開槽耦合微帶天線的理論分析之基礎。其次,利用低價的印刷電路FR4基板,設計一系列S頻段的開槽耦合微帶天線,從傳統的開槽耦合微帶天線、加入空氣層的寬頻開槽耦合微帶天線及寬頻開槽耦合堆疊式微帶天線,利用模擬與實作對其特性作探討,包括各參數對天線特性之影響,並實際量測獲得傳統的開槽耦合微帶天線僅有3 % 的頻寬,而加入空氣層的寬頻開槽耦合微帶天線有14 % 的頻寬且天線增益為7.7 dBi,及寬頻開槽耦合堆疊式微帶天線有33 % 的頻寬且天線增益為7.51 dBi;接著利用軟體模擬設計Ka頻段的寬頻開槽耦合微帶天線,並設計其製程符合微機電製程技術要求;最後,藉由微機電製程技術的方式,實際完成Ka頻段的寬頻開槽耦合微帶天線之製作,在阻抗良好的匹配情況下,其頻寬可達50 % 以上。

In this thesis, the characteristics of wide band aperture coupled microstrip patch antennas (MPAs) is studied. First, we conduct the basic theoretical analysis of the aperture coupled MPA. We use the full-wave numerical analysis method that has higher accuracy to understand the whole process of analysis. The purpose is to build up foundation of theoretical analysis for wide band aperture coupled MPA.
Then, we design a series of the S-band aperture coupled MPA. The cheaper and more available FR4 PCB substrate is used to layout the element of antenna. These antenna structures consist of (a) the traditional aperture coupled MPA, (b) the wide band aperture coupled MPA with a air layer, and (c) the wide band aperture coupled stacked MPA. The simulations and the experimental measurements is used to study the characteristics of these antenna structures, in terms of parameters for the variations of resonant frequencies and input impedance with antenna. The bandwidth of the traditional aperture coupled MPA is measured to be only about 3 %. The bandwidth of the wide band aperture coupled MPA with a air layer is measured to be about 14 %, and maximum antenna gain of 7.7 dBi. The bandwidth of the wide band aperture coupled stacked MPA is measured to be about 33 %, and maximum antenna gain of 7.51 dBi.
Next, we design Ka-band wide band aperture coupled MPAs based on the simulation software tool. These antenna structures consist of (a) the wide band aperture coupled MPA with an etched cavity, (b) the wide band aperture coupled stacked MPA. We design these antenna based on micromachined process.
Finally, one of the designed Ka-band wide band aperture coupled MPAs has been produced on silicon wafers by using the micromachining technique. The bandwidth (defined as having a return loss of less than —10 dB) of the micromachined wide band aperture coupled MPA is measured to be over 50 %.

目次
摘要……………………………………………………………….iii
誌謝……………………………………………………………….v
目次……………………………………………………………….vi
表目錄…………………………………………………………….viii
圖目錄…………………………………………………………….ix
第一章 緒論………………………………………………….. 1
1.1研究背景……………………………………………..1
1.2 研究動機…………………………………………….. 2
1.3 文獻回顧……………………………………………..5
1.4論文內容…………………………………………….. 8
第二章基本理論分析研究…………………………………..9
2.1簡介…………………………………………………..9
2.2分析公式…………………………………………….9
2.2.1 等效原理……………………………………..9
2.2.2 邊界條件……………………………………..13
2.2.3 動差法………………………………………..13
2.2.4 輸入阻抗……………………………………..18
2.3模擬軟體…………………………………………….19
第三章寬頻開槽耦合微帶天線之特性研究………………. 21
3.1簡介………………………………………………….21
3.2傳統開槽耦合微帶天線…………………………….22
3.2.1天線結構與特性……………………………..22
3.2.2實驗結果與討論……………………………..24
3.3加入空氣層之寬頻開槽耦合微帶天線……………39
3.3.1天線結構與特性……………………………..39
3.3.2實驗結果與討論……………………………..41
3.4寬頻開槽耦合堆疊式微帶天線……………………47
3.4.1天線結構與特性……………………………..47
3.4.2實驗結果與討論……………………………..49
第四章微機電寬頻開槽耦合微帶天線之研究……………. 64
4.1簡介…………………………………………………64
4.2加入空氣層之寬頻開槽耦合微帶天線……………65
4.2.1天線結構與特性……………………………..65
4.2.2模擬結果與討論……………………………..67
4.3寬頻開槽耦合堆疊式微帶天線……………………72
4.3.1天線結構與特性……………………………..72
4.3.2模擬結果與討論……………………………..74
4.4微機電製程技術……………………………………76
第五章製作結果與量測…………………………………….89
第六章結論 96
參考文獻 98
附錄 102
A接地介質基板格林函數 102
B微帶線與CPW線的轉換 104

[1]Clark T.-C. Nguyen, Linda P.B. Katehi, and Gabriel M. Rebeiz, “Micromachined Devices for Wireless Communications,” Proc. IEEE, Vol.86, pp.1756-1768, 1998.
[2]Clark T.-C. Nguyen, “Micromachined Technologies for Miniaturized Communication Devices,” SPIE Conf. On Micromachined Devices, Vol.3514, pp.24-38, 1998.
[3]R. E. Muson, “Conformal microstrip antennas and microstrip phased arrays,” IEEE, Trans. Antennas Propagat.., Vol.AP-22, NO.1, pp.74-78, Jan. 1974.
[4]I. J. Bahl and P. S. Bhartia, Microstrip Antennas, Artech House, Dedham, MA, USA, 1980.
[5]D. M. Pozar, “Microstrip Antennas,” Proc. IEEE, Vol.80, pp.79-91,Jan. 1992.
[6]A. Balanis, Antenna Theory: Analysis and Design, second edition, John Wiley & Sons, Inc., 1997.
[7]N. Herscovici, “New Considerations in the Design of Microstrip Antennas,” IEEE Trans. Antennas and Propagat., Vol.46, No.6, pp.807-812, 1998.
[8]A. Ando., “A Novel Electromagnetically Coupled Microstrip Antenna with a Rotable Patch for Personal Handy-Phone System Units,” IEEE Trans. Antennas and Propagat., Vol.46, No.6, pp.794-797, 1998.
[9]D. M. Pozar, “Microstrip Antenna Aperture-Coupled to a Microstrip Line,” Electron. Lett., Vol.21, No.2, pp.49-50 Jan 1985.
[10]J. R. James, and P. S. Hall, Handbook of Microstrip Antennas., Vol.1 and 2, Peter Peregrinus, London, UK,1989.
[11]M. Himdi, J. P. Daniel and C.Terret, “Transmission Line Analysis of Aperture-Coupled Microstrip Antenna,” Electron. Lett., Vol.25, No.18, pp.1229-1230 Aug 1989.
[12]M. Himdi, J. P. Daniel and C.Terret, “Analysis of Aperture-Coupled Microstrip Antenna using Cavity Method,” Electron. Lett., Vol.25, No.6, pp.391-392 Mar 1989.
[13]A. Ittipiboon, R. Oostlander, Y. M. M. Antar, and M. Cuhaci, “A Modal Expansion Method of Analysis and Measurement on Aperture-Coupled Microstrip Antenna,” IEEE Trans. Antennas and Propagat., Vol.39, No.11, pp.1567-1573, 1991.
[14]P. L. Sullivan and D. H. Schaubert, “Analysis of an Aperture Coupled Microstrip Antenna,” IEEE Trans. Antennas and Propagat., Vol.AP-34, No.8, pp.977-984, Aug. 1986.
[15]D. M. Pozar, “A Reciprocity Method of Analysis for Printed Slot and Slot-Coupled Microstrip Antennas,” IEEE Trans. Antennas and Propagat., Vol.AP-34, No.12, pp.1439-1446, Dec. 1986.
[16]E. Chang, S. A. Long and W. F. Richards, “Experimental Investigation of Electrically Thick Rectangular Microstrip Antennas,” IEEE Trans. Antennas and Propagat., Vol.AP-34, pp.767-772, June 1986.
[17]D. H. Schaubert, D. M. Pozar, and A. Adrian, “Effect of Microstrip Antenna Substrate Thickness and Permittivity : Comparison of Theories and Experiment,” IEEE Trans. Antennas and Propagat., Vol.AP-37, pp.677-682, June 1989.
[18]K. F. Tong, K. M. Luk, K. F. Lee, and S. M. Shum, “Analysis of Broadband U-slot Microstrip Antenna,” IEE International Conference of Antennas and Propagat., NO.436, pp.14-17, April 1997
[19]D. M. Pozar, and B. Kaufman, “Increasing the Bandwidth of a Microstrip Antenna by Proximity Coupling,” Electron. Lett., Vol.23, pp.368-369, Apr. 1987.
[20]N. Herscovici, “A Wide-Band Single-Layer Patch Antenna,” IEEE Trans. Antennas and Propagat., Vol.46, No.4, pp.471-474, April 1998.
[21]C. Wood, “Improved Bandwidth of Microstrip Antennas Using Parasitic Elements,” Proc. IEE, Vol.127, Part H, pp.231-234, Apr. 1980.
[22]T. M. Au, and K. M. Luk, “Effect of Parasitic Element on the Characteristics of Microstrip Antenna,” IEEE Trans. Antennas and Propagat., Vol.39, No.8, pp.1247-1251, Aug. 1991.
[23]T. M. Au, K. F. Tong, and K. M. Luk, “Characteristics of Aperture-Coupled Coplanar Microstrip Subarrays,” Proc. Microwave Antennas Propagat. IEE, Vol.144, No.2, pp.137-140, Apr. 1997.
[24]F. Croq, and A. Papiernik, “Stacked Slot-Coupled Printed Antenna,” IEEE Microwave and Guided Wave Lett., Vol. 1, pp.288-290, Oct. 1991.
[25]F. Croq, and D. M. Pozar, “Millimeter Wave Design of Wide-Band Aperture-Coupled Stacked Microstrip Antenna,” IEEE Trans. Antennas and Propagat., Vol.39, pp.1770-1776, Dec. 1991.
[26]S. D. Targonski, and R. B. Waterhouse, “An Aperture Coupled Stacked Patch Antenna with 50% Bandwidth,” IEEE Trans. Antennas and Propagat. Symp. Dig., Baltimore, MD, pp.18-22, July 1996.
[27]S. D. Targonski, R. B. Waterhouse, and D. M. Pozar, “Design of Wide-Band Aperture-Stacked Patch Microstrip Antennas,” IEEE Trans. Antennas and Propagat.,Vol.46, No.9, pp.1245-1251, Sep. 1998.
[28]R. B. Waterhouse, “Design and Performance of Large Phased Arrays of Aperture Stacked Patches,” IEEE Trans. Antennas and Propagat.,Vol.49, No.2, pp.292-297, Feb. 2001.
[29]F. Croq, and D. M. Pozar, “Multifrequency Operation of Microstrip Antennas Using Aperture Coupled Parallel Resonators,” IEEE Trans. Antennas and Propagat.,Vol.40, pp.1367-1374, Nov. 1992.
[30]J. Y. Jsn, and K. L. Wong, “Broadband Circular Microstrip Antenna with Embedded Reactive Loading,” Electron. Lett., Vol.34, pp.1804-1805, Sep. 1998.
[31]K. L. Wong, and Y. F. Lin, “Small Broadband Rectangular Microstrip Antenna with Chip-Resistor Loading,” Electron. Lett., Vol.33, pp.1593-1594, Sep. 1998.
[32]I. Papapolymerou, R. F. Drayton, and Linda P. B. Katehi, “Micromachined Patch Antennas,” IEEE Trans. Antennas and Propagat.,Vol.46, No.2, pp.275-283, Feb. 1998.
[33]J. G. Yook, and Linda P. B. Katehi, “Suppression of Surface Waves Using the Micromachining Technique,” IEEE Trans. Antennas and Propagat.,Vol.2, pp.652-655, 1998.
[34]M. Zheng, Q. Chen, P. S. Hall, and V. F. Fusco, “Broadband Microstrip Patch Antenna on Micromachined Silicon Substrates,” Electron. Lett.,Vol.34, pp.3-4, Jan. 1998.
[35]J. G. Yook, and Linda P. B. Katehi, “Microstrip Patch Antennas on Micromachined Low-Index Materials,” IEEE Trans. Antennas and Propagat.,Vol.2, pp.1220-1223, 1995.
[36]Q. Chen, V. F. Fusco, M. Zheng, and P. S. Hall, “Micromachined Silicon Antennas,” Microwave and Millimeter Wave Tech. Proc., pp.289-292, 1998.
[37]G. P. Gauthier, J. -P. Raskin, Linda P. B. Katehi, and G. M. Rebeiz, “A 94-GHz Aperture-Coupled Micromachined Microstrip Antenna,” IEEE Trans. Antennas and Propagat.,Vol.47, No.12, pp.1761-1766, 1999.
[38]R. W. Jackson, and D. M. Pozar, “Full-Wave Analysis of Microstrip Open-End and Gap Discontinuities,” IEEE Trans. Microwave Theory Tech.,Vol.MTT-33, pp.1036-1042, Oct. 1985.
[39]D. M. Pozar, and S. D. Targonski, “Improved Coupling for Aperture Coupled Microstrip Antennas,” Electron. Lett., Vol.27, No.13, pp.1129-1131, June 1991.
[40]V. Rathi, G. Kumar, and K. P. Ray, “Improved Coupling for Aperture Coupled Microstrip Antennas,” IEEE Trans. Antennas and Propagat.,Vol.44, No.8, pp.1196-1198, Aug. 1996.
[41]M. Houdart, and C. Aury, “Various Excitation of Coplanar Waveguide,” IEEE MTT-S Digest, pp.116-118, 1979.
[42]G. P. Gauthier, Linda P. B. Katehi, and G. M. Rebeiz, “W-Band Finite Ground Coplanar Waveguide (FGCPW) to Microstrip Line Transition,” IEEE MTT-S Digest, pp.107-109, June 1998.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top