|
A.M.Wazwaz , 1998, “A comparison between Adomian decomposition method and Taylor series method in the series solutions, Applied Mathematics and Computation, Vol. 97, pp.37-44. A.M.Wazwaz , 1999, “Analytical approximations and Padé approximants for Volterra’s population model, Applied Mathematics and Computation, Vol. 100, pp.13-25. A.M.Wazwaz , 1999, “A reliable modification of Adomian decomposition method, Applied Mathematics and Computation, Vol. 102, pp. 77-86. A.M.Wazwaz, 1999, “The modified decomposition method and Padé approximants for solving the Thomas–Fermi equation, Applied Mathematics and Computation, Vol. 105, pp.11-19. A.M.Wazwaz , 2000, “A new algorithm for calculating Adomian polynomials for nonlinear operators, Applied Mathematics and Computation, Vol. 111, pp.53-69. A.M.Wazwaz, 2001, “A reliable algorithm for solving boundary layer problems for higher-order integro-differential equations, Applied Mathematics and Computation, Vol. 118, pp. 327-342. A.M.Wazwaz , 2010, The combined Laplace transform-Adomian decomposition method for handling nonlinear Volteera integro-differential equations “Applied Mathematics and Computation , vol.216,pp.1304-1309 A.Aziz, F.Khani, 2010 ,Convection-radiation from a continuously moving fin of variable thermal conductivity Journal of the Franklin Institute , Vol. 348, pp. 640-651 A.Aziz, R.J.Lopez, 2011 , “Convection-radiation from a continuously moving variable thermal conductivity sheet or rod undergoing thermal processing, International Journal of Thermal Sciences,vol.50,pp.1523-1531 A.Aziz, M.Torabi, K.Zhang , 2013 , “Convective–radiative radial fins with convective base heating and convective–radiative tip coolinghomogeneous and functionally graded materials Energy Conversion and Management,vol.75,pp.366-376 A.S. Arife, S.T. Korashe, A. Yildirim, 2011 ,Laplace adomian decomposition method for solving a model chronic myelogenouus leukemia CML and T cell interaction, World Applied Sciences Journal 13(4) B. Van der Pol, J. Van der Mark, 1927, “Frequency demultiplication, Nature, Vol. 120, No. 3019, pp. 363-364. C. Arslanturk , 2009, “Correlation equations for optimum design of annular fins with temperature dependent thermal conductivityHeat Mass Transfer vol.45,pp.519-525 F. Khani , M. A Raji , H.H. Nejad , 2009 , “Analytical solutions and efficiency of the nonlinear fin problem with temperature dependent thermal conductivity and heat transfer coefficient ,Communi Nonlinear Sci Simulation , vol.14,pp . 3327 – 3338 F. Incropera :Introduction to Heat Transfer 5th edition G. Adomian , 1995 , “Delayed Nonlinear Dynamical Systems, Mathematical and Computer Modelling, vol.22,No3,pp. 77-79
G.Adomian, 1996, “Solution of the coupled nonlinear partial differential equations by decomposition, Computers & Mathematics with Applications, Vol. 31, No. 6, pp. 117-120. G.Adomian, 1996, “The fifth-order Korteweg-de Vries equation, International Journal of Mathematics and Mathematical Sciences, Vol. 19, No. 2, pp. 415. G.Adomian, 1997, “On the dynamics of a reaction-diffusion system, Computers & Mathematics with Applications, Vol. 81, pp. 93-97. G.Adomian, 1998, “Solutions of nonlinear P.D.E., Applied Mathematics Letters, Vol. 11, No. 3, pp. 121-123. G.Adomian, 1998, “Nonlinear dissipative wave equation, Applied Mathematics Letters, Vol. 11, No. 3, pp. 125-126. G. Domairry, M. Fazeli, 2009 ,“Homotopy analysis method to determine the fin efficiency of convective straight fins with temperature-dependent thermal conductivity,Communications Nonlinear SciSimulation, vol.14,pp.489-499 J. Fadaei , 2011,“Application of Laplace-Adomian Decomposition Method on Linear and Nonlinear System of PDEs ,“Applied Mathematical Sciences , Vol. 5,no.27,pp.1307-1315 J.H.Kuang, C.J.Chen, 2005, “Adomian decomposition method used for solving nonlinear pull-in behavior in electrostatic micro-actuators, Mathematical and Computer Modelling, Vol. 41, pp. 1479-1491. M.Torabi , H.Yaghoobi, 2012 ,Analytical Approaches for Thermal Analysis of Radiative Fin with a Step Change in Thickness and Variable Thermal Conductivity , Heat Transfer-Asian Research , vol .41(4) M.Torabi, A.Aziz, K.Zhang, 2012 , “A comparative study of longitudinal fins of rectangular, trapezoidal and concave parabolic profiles with multiple nonlinearities , Energy,vol.51, pp.243-256 M.Torabi, H.Yaghoobi, A.Aziz, 2012 ,Analytical Solution for Convective-Radiative Continuously Moving Fin with Temperature-Dependent Thermal Conductivity , vol.33 ,pp.924-941 M. Hatami ,D.D. Ganji, 2013 ,Thermal performance of circular convective–radiative porous fins with different section shapes and materials, Energy Conversion and Management, vol.76,pp.185-193 M.Y. Ongun , 2010 , “The Laplace Adomian Decomposition Method for solving a model for HIV infection of CD4+T cell, Mathematical and Computer Modelling , vol. 53 ,pp. 597-603 P.Y. Tsai , 2010 , “Application od the Hybrid Laplace Adomian Decomposition Method to Nonlinear Physcial Systems, S.A.Khuri , 2001, “On the decomposition method for approximate solution of nonlinear ordinary differential equation, International Journal of Mathematical Education in Science and Technology, Vol. 32, No. 4, pp. 525-539. S.A.Khuri, 2004, “A new approach to Bratu’s equation Applied Mathematics and Computation, Vol. 147, pp. 131-136. S.A. Khuri , 2011 , A Laplace decomposition algorithm applied to a class of nonlinear differential equations Journal of Applied Mathematics 1:4,pp.141-155
S. Saedodin , S. Mohammad, B. Motaghedi, 2014,Comprehensive analytical study for convective-radiative continuously moving plates with multiple non-linearities Energy Conversion and Management,Vol.88,pp.160-168 S.B. Coşkun, M.T. Atay , 2008 ,Fin efficiency analysis of convective straight fins with temperature dependent thermal conductivity using variational iteration method Applied Thermal Engingeering ,vol.28,pp.2345-2352 S.N. Venkatarangan, and K. Rajalakshmi,1995, “A modification of Adomian’s solution for nonlinear oscillatory systems, Computers & Mathematics with Applications, Vol. 29, No. 6, pp. 67-73. Y.T. Yang ,C.C. Chang , C.K. Chen, 2011 , “A double decomposition method for solving the annular hyperbolic profile fins with variable thermal conductivity Heat Transfer Engineering, Vol. 31,Issue 14, pp. 1165-1172.
|