跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.152) 您好!臺灣時間:2025/11/06 02:48
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:彭湛傑
研究生(外文):Jhan-Jie Peng
論文名稱:探討果蠅Eaat1透過清除穀胺酸在整合運動迴路運轉及神經肌肉接合點形成的角色
論文名稱(外文):Investigate roles of Drosophila Eaat1-mediated glutamate clearance in the functional integrity of the motor circuit and the formation of the neuromuscular junction
指導教授:姚季光
指導教授(外文):Chi-Kuang Yao
口試委員:陳光超陳俊安林書葦
口試委員(外文):Guang-Chao ChenJun-An ChenSue-Wei Lin
口試日期:2016-07-28
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:生化科學研究所
學門:生命科學學門
學類:生物科技學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:中文
論文頁數:97
中文關鍵詞:穀胺酸訊息傳遞刺激毒性星狀膠細胞刺激性胺基酸載體1中樞樣式產生器ROS/JNK訊息路徑神經肌肉接合點
外文關鍵詞:Glutamate transmissionExcitotoxicityAstrocyteEaat1CPGROS/JNK signalingNMJ
相關次數:
  • 被引用被引用:0
  • 點閱點閱:304
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
在中樞神經系統中,穀胺酸訊息傳遞對於動物行為的調控是不可或缺的。一旦穀胺酸從突觸囊泡中釋放,它需要立刻被周圍的星狀膠細胞給移除。星狀膠細胞上的刺激性胺基酸載體(Eaat)負責回收大部分的穀胺酸,藉此確保穀胺酸訊息傳遞的精確性以及避免穀胺酸過度刺激所產生的毒性。在神經退化性疾病致中,常伴隨著Eaat1表現量的下降,而回收機制的失衡將導致穀胺酸累積在細胞外,神經系統因此被過度刺激而加速疾病的惡化。雖然穀胺酸如何導致神經細胞死亡的機制已被廣泛的研究,但它的刺激毒性對於神經迴路整體的影響卻不清楚。因此,本篇研究利用果蠅幼蟲的運動迴路系統,探討星狀膠細胞在穀胺酸訊息傳遞的角色。從找尋參與突觸生成的新分子的遺傳篩選實驗中,我發現了果蠅Eaat1的減效對偶基因。在果蠅幼蟲中,此突變的對偶基因導致Eaat1的表現大幅下降,神經肌肉接合點的突觸終釦大量增生,幼蟲的運動能力也大受影響。果蠅幼蟲的蠕動爬行是受到中樞樣式產生器(CPG)的神經迴路所調控,Eaat1的喪失導致異常的CPG活性,受其調控的運動神經元雖然變得不常活化,但每次活化的時間卻明顯拉長。在eaat1突變果蠅中,單獨將Eaat1表現在星狀膠細胞中, 便能救回異常的CPG活性以及爬行能力。Eaat1的喪失也伴隨著細胞外穀胺酸的累積,干擾了刺激性及抑制性神經在CPG中的訊息傳遞,因而影響幼蟲的爬行能力。值得注意的是,降地刺激性乙醯膽鹼神經的氧化壓力或著增加它的刺激性能夠顯著改善CPG的活性以及幼蟲的爬行能力。此外,異常的CPG活性造成下游的運動神經產生大量的過氧化物,受環境壓力所調控的JNK訊息路徑因此被活化,導致突觸終釦的異常增生。因此,本篇研究闡述位於運動迴路上游的星狀膠細胞,如何藉由Eaat1對於迴路活性的影響,來調控運動神經元的特性。

Glutamate transmission in CNS is critical for animal behavior. Upon the release of glutamate from synaptic vesicles, it is immediately removed by the surrounding astrocyte. The Excitatory Amino Acid Transporter (Eaat) in astrocyte is majorly responsible for the glutamate clearance in CNS, which ensures the fidelity of neurotransmission and prevents glutamate excitotoxicity. In neurodegenerative diseases, downregulation of Eaat has been repeatedly reported and accumulation of extracellular glutamate due to impaired recycle system accelerates the disease progression. Although how excessive glutamate leads to neuronal death has been widely studied, the influence of glutamate excitotoxicity on neural circuit is still elusive. Here, we use Drosophila larval locomotor circuit to study the role of glia on the glutamate transmission in CNS. From a genetic screen for novel players involved in synaptic formation, we identified a strong hypomorphic Drosophila eaat1 allele which led to strong loss of eaat1, expanded neuromuscular junction, and severe locomotor deficits. The locomotion of Drosophila larva is controlled by the neural circuit called central pattern generator (CPG). Loss of eaat1 resulted in aberrant CPG activity which caused prolonged but less frequent activation of motoneurons. Restoring the expression of eaat1 exclusively in the astrocyte was sufficient to restore the CPG and locomotion defects in eaat1 mutants. Impaired glutamate clearance in loss of eaat1 led to extracellular glutamate accumulation and disrupted the excitatory and inhibitory synaptic signaling in the CPG. Remarkably, reducing the oxidative stress or increasing the excitability of excitatory cholinergic neurons in eaat1 mutants improved both CPG rhythmicity and mobility. Moreover, the irregular CPG firing pattern in loss of eaat1 triggered the ROS/JNK signaling in motorneurons and caused excessive synaptic bouton formation. We demonstrated a non-cell autonomous mechanism to regulate the physiology of motoneurons via Eaat1 in upstream astrocyte.

Table of contents
口試委員會審定書 i
摘要 ii
Abstract iii
Chapter 1 Introduction 1
1.1 Drosophila locomotor circuit 1
1.2 Excitatory Amino Acid Transporter (EAAT) and the neurological disorders 1
Chapter 2 Material and methods 4
2.1 Drosophila strains 4
2.2 Identification of molecular lesion in the EMS-mutagenized mutants 7
2.3 Generation of Clc-c null mutant via P-element excision 11
2.4 Generation of transgenic fly 11
2.5 Immunohistochemistry 12
2.6 Western blotting 14
2.7 Fly genetics 15
2.8 Extracellular glutamate measurement in the VNC by glutamate sensor iGluSnFR 16
2.9 Electrophysiology 17
2.10 Calcium imaging 17
2.11 Video tracking of larval locomotion 18
2.12 Drug treatment 18
2.13 Mitochondrial stress measurement by MitoTimer 19
2.14 In vivo detection of reactive oxygen species by H2DCFDA 19
2.15 Statistical analysis 20
Chapter 3 Results 3
3.1 A forward genetic screen for novel players involved in the formation of synaptic boutons at the Drosophila NMJs 21
3.2 The mutation in eaat1 promotes the formation of the NMJ boutons 23
3.3 Expression of Eaat1 in astrocytes is responsible for the formation of NMJ boutons 24
3.4 Eaat1-mediated glutamate uptake in astrocytes is responsible for rhythmicity of CPG activity and locomotion 25
3.5 Glutamate accumulation at the synaptic clefts of excitatory and inhibitory glutamatergic interneurons neurons impair CPG activity 28
3.6 Loss of eaat1 results in oxidative stress in cholinergic interneurons, which impedes the rhythmicity of CPG 31
3.7 Impaired CPG activity non-autonomously alters the formation of the NMJ boutons in the eaat1 mutants 33
3.8 ROS-mediated JNK activation autonomously promotes the formation of the NMJ boutons in the eaat1 mutants 34
Chapter 4 Discussion 36
4.1 Conserved role of Drosophila Eaat1 on glutamate transmission and locomotor behavior 36
4.2 CPG firing pattern and the synaptic bouton formation in the NMJ 37
4.4 Aberrant neural circuit activity in neurological disorder 38
Figures 39
Figure 1. Cases of different types of neurons involved in Drosophila larval locomotor circuit 39
Figure 2. Representation of Drosophila larval neuromuscular junction (NMJ) 41
Figure 3. Characterization and deficiency mapping for the molecular lesion of the EMS-mutagenized mutant collection 42
Figure 4. BE471 is a strong hypomorphic eaat1 allele and responsible for the excessive synaptic boutons formation at Drosophila larval NMJ 44
Figure 5. Quantification of NMJ phenotype associated with eaat1BE/BE at muscle 4 46
Figure 6. Eaat1 is severely reduced in the CNS of 3rd instar eaat1BE/BE mutant larva 47
Figure 7. Synaptic bouton size and density of active zone are altered in eaat1BE/BE mutant 48
Figure 8. Expression profile of Eaat1 in 3rd instar larval VNC 50
Figure 9. Eaat1 is not expressed in Drosophila 3rd instar larval NMJ 51
Figure 10. Astrocyte-associated Eaat1 is responsible for excessive synaptic boutons formation at NMJ associated with eaat1BE/BE 52
Figure 11. Astrocyte-associated Eaat1 regulates the activity of CPG 54
Figure 12. Astrocyte-associated Eaat1 controls the larval locomotor activity 56
Figure 13. Eaat1 activity regulates the larval peristaltic locomotion 57
Figure 14. Eaat1 is wildly distributed in the processes of astrocyte-like glia which are closely associated with glutamatergic presynapses and responsible for extracellular glutamate clearance. 58
Figure 15. Efficacy of vGlut-RNAi on extracellular glutamate level. 60
Figure 16. Excessive extracellular glutamate in the CNS is responsible for aberrant CPG activity and locomotor deficits associated with eaat1BE/BE mutant. 62
Figure 17. Inhibitory glutamatergic neurons partly contribute to the locomotor deficits in eaat1BE/BE mutants. 65
Figure 18. Oxidative stress is mildly elevated in eaat1BE/BE mutant 66
Figure 19. Elevated oxidative stress in central cholinergic neurons contribute to aberrant CPG activity and locomotor deficits in eaat1BE/BE mutant 68
Figure 20. The abnormal CPG activity and locomotor deficits associated with eaat1BE/BE can be partly rescued by increasing the excitability in central cholinergic neurons. 71
Figure 21. The excessive synaptic boutons formation at NMJ in eaat1BE/BE was associate with aberrant CPG activity. 73
Figure 22. Mitochondria in eaat1BE/BE is suffered from elevated oxidative stress 75
Figure 23. ROS-induced JNK signaling in motoneuron is responsible for excessive synaptic boutons formation at NMJ in eaat1BE/BE mutant 76
Figure 24. The pattern of CPG activity is dependent on Eaat1 level 78
Figure 25. BMP signal is selectively activated in eaat1 mutant with severe loss of eaat1 80
Figure 26. Schematic model of glutamate excitotoxicity on Drosophila larval motor circuit in loss of eaat1 82
Tables 84
Table 1. Summary of the EMS mutants whose corresponding gene for NMJ phenotype were identified 84
Table 2. Summary of the forward genetic screen for novel players involved in synaptic formation at Drosophila larval NMJ 85
Contribution 87
Reference 88



Aberle, H., Haghighi, A.P., Fetter, R.D., McCabe, B.D., Magalhaes, T.R., and Goodman, C.S. (2002). wishful thinking encodes a BMP type II receptor that regulates synaptic growth in Drosophila. Neuron 33, 545-558.
Aleman-Meza, B., Jung, S.K., and Zhong, W. (2015). An automated system for quantitative analysis of Drosophila larval locomotion. BMC developmental biology 15, 11.
Amer, J., Atlas, D., and Fibach, E. (2008). N-acetylcysteine amide (AD4) attenuates oxidative stress in beta-thalassemia blood cells. Biochimica et biophysica acta 1780, 249-255.
Anderson, P.R., Kirby, K., Hilliker, A.J., and Phillips, J.P. (2005). RNAi-mediated suppression of the mitochondrial iron chaperone, frataxin, in Drosophila. Human molecular genetics 14, 3397-3405.
Arnth-Jensen, N., Jabaudon, D., and Scanziani, M. (2002). Cooperation between independent hippocampal synapses is controlled by glutamate uptake. Nature neuroscience 5, 325-331.
Ataman, B., Ashley, J., Gorczyca, M., Ramachandran, P., Fouquet, W., Sigrist, S.J., and Budnik, V. (2008). Rapid activity-dependent modifications in synaptic structure and function require bidirectional Wnt signaling. Neuron 57, 705-718.
Awasaki, T., Lai, S.L., Ito, K., and Lee, T. (2008). Organization and postembryonic development of glial cells in the adult central brain of Drosophila. The Journal of neuroscience : the official journal of the Society for Neuroscience 28, 13742-13753.
Baines, R.A., Uhler, J.P., Thompson, A., Sweeney, S.T., and Bate, M. (2001). Altered electrical properties in Drosophila neurons developing without synaptic transmission. The Journal of neuroscience : the official journal of the Society for Neuroscience 21, 1523-1531.
Berni, J., Pulver, S.R., Griffith, L.C., and Bate, M. (2012). Autonomous circuitry for substrate exploration in freely moving Drosophila larvae. Current biology : CB 22, 1861-1870.
Brigelius-Flohe, R., and Traber, M.G. (1999). Vitamin E: function and metabolism. FASEB journal : official publication of the Federation of American Societies for Experimental Biology 13, 1145-1155.
Brumby, A., Secombe, J., Horsfield, J., Coombe, M., Amin, N., Coates, D., Saint, R., and Richardson, H. (2004). A genetic screen for dominant modifiers of a cyclin E hypomorphic mutation identifies novel regulators of S-phase entry in Drosophila. Genetics 168, 227-251.
Burkhart, B.D., Montgomery, E., Langley, C.H., and Voelker, R.A. (1984). Characterization of Allozyme Null and Low Activity Alleles from Two Natural Populations of DROSOPHILA MELANOGASTER. Genetics 107, 295-306.
Castrillon, D.H., Gonczy, P., Alexander, S., Rawson, R., Eberhart, C.G., Viswanathan, S., DiNardo, S., and Wasserman, S.A. (1993). Toward a molecular genetic analysis of spermatogenesis in Drosophila melanogaster: characterization of male-sterile mutants generated by single P element mutagenesis. Genetics 135, 489-505.
Chen, T.W., Wardill, T.J., Sun, Y., Pulver, S.R., Renninger, S.L., Baohan, A., Schreiter, E.R., Kerr, R.A., Orger, M.B., Jayaraman, V., et al. (2013). Ultrasensitive fluorescent proteins for imaging neuronal activity. Nature 499, 295-300.
Choi, B.J., Imlach, W.L., Jiao, W., Wolfram, V., Wu, Y., Grbic, M., Cela, C., Baines, R.A., Nitabach, M.N., and McCabe, B.D. (2014). Miniature neurotransmission regulates Drosophila synaptic structural maturation. Neuron 82, 618-634.
Cole, S.H., Carney, G.E., McClung, C.A., Willard, S.S., Taylor, B.J., and Hirsh, J. (2005). Two functional but noncomplementing Drosophila tyrosine decarboxylase genes: distinct roles for neural tyramine and octopamine in female fertility. The Journal of biological chemistry 280, 14948-14955.
Collins, B., Kane, E.A., Reeves, D.C., Akabas, M.H., and Blau, J. (2012). Balance of activity between LN(v)s and glutamatergic dorsal clock neurons promotes robust circadian rhythms in Drosophila. Neuron 74, 706-718.
Cooper, M.T., and Kennison, J.A. (2011). Molecular genetic analyses of polytene chromosome region 72A-D in Drosophila melanogaster reveal a gene desert in 72D. PloS one 6, e23509.
Cox, R.T., and Spradling, A.C. (2003). A Balbiani body and the fusome mediate mitochondrial inheritance during Drosophila oogenesis. Development 130, 1579-1590.
Dansereau, D.A., Lunke, M.D., Finkielsztein, A., Russell, M.A., and Brook, W.J. (2002). Hephaestus encodes a polypyrimidine tract binding protein that regulates Notch signalling during wing development in Drosophila melanogaster. Development 129, 5553-5566.
David, C.N., Frias, E.S., Szu, J.I., Vieira, P.A., Hubbard, J.A., Lovelace, J., Michael, M., Worth, D., McGovern, K.E., Ethell, I.M., et al. (2016). GLT-1-Dependent Disruption of CNS Glutamate Homeostasis and Neuronal Function by the Protozoan Parasite Toxoplasma gondii. PLoS pathogens 12, e1005643.
Doherty, J., Logan, M.A., Tasdemir, O.E., and Freeman, M.R. (2009). Ensheathing glia function as phagocytes in the adult Drosophila brain. The Journal of neuroscience : the official journal of the Society for Neuroscience 29, 4768-4781.
Eresh, S., Riese, J., Jackson, D.B., Bohmann, D., and Bienz, M. (1997). A CREB-binding site as a target for decapentaplegic signalling during Drosophila endoderm induction. The EMBO journal 16, 2014-2022.
Featherstone, D.E., Rushton, E., Rohrbough, J., Liebl, F., Karr, J., Sheng, Q., Rodesch, C.K., and Broadie, K. (2005). An essential Drosophila glutamate receptor subunit that functions in both central neuropil and neuromuscular junction. The Journal of neuroscience : the official journal of the Society for Neuroscience 25, 3199-3208.
Fischer-Vize, J.A., Rubin, G.M., and Lehmann, R. (1992). The fat facets gene is required for Drosophila eye and embryo development. Development 116, 985-1000.
Fox, L.E., Soll, D.R., and Wu, C.F. (2006). Coordination and modulation of locomotion pattern generators in Drosophila larvae: effects of altered biogenic amine levels by the tyramine beta hydroxlyase mutation. The Journal of neuroscience : the official journal of the Society for Neuroscience 26, 1486-1498.
Frank, C.A. (2014). Homeostatic plasticity at the Drosophila neuromuscular junction. Neuropharmacology 78, 63-74.
George, H., and Terracol, R. (1997). The vrille gene of Drosophila is a maternal enhancer of decapentaplegic and encodes a new member of the bZIP family of transcription factors. Genetics 146, 1345-1363.
Gordon, M.D., and Scott, K. (2009). Motor control in a Drosophila taste circuit. Neuron 61, 373-384.
Grueber, W.B., Ye, B., Yang, C.H., Younger, S., Borden, K., Jan, L.Y., and Jan, Y.N. (2007). Projections of Drosophila multidendritic neurons in the central nervous system: links with peripheral dendrite morphology. Development 134, 55-64.
Guo, H., Lai, L., Butchbach, M.E., Stockinger, M.P., Shan, X., Bishop, G.A., and Lin, C.L. (2003). Increased expression of the glial glutamate transporter EAAT2 modulates excitotoxicity and delays the onset but not the outcome of ALS in mice. Human molecular genetics 12, 2519-2532.
Herman, M.A., and Jahr, C.E. (2007). Extracellular glutamate concentration in hippocampal slice. The Journal of neuroscience : the official journal of the Society for Neuroscience 27, 9736-9741.
Higashimori, H., Schin, C.S., Chiang, M.S., Morel, L., Shoneye, T.A., Nelson, D.L., and Yang, Y. (2016). Selective Deletion of Astroglial FMRP Dysregulates Glutamate Transporter GLT1 and Contributes to Fragile X Syndrome Phenotypes In Vivo. The Journal of neuroscience : the official journal of the Society for Neuroscience 36, 7079-7094.
Hodge, J.J., and Stanewsky, R. (2008). Function of the Shaw potassium channel within the Drosophila circadian clock. PloS one 3, e2274.
Hou, X.S., Goldstein, E.S., and Perrimon, N. (1997). Drosophila Jun relays the Jun amino-terminal kinase signal transduction pathway to the Decapentaplegic signal transduction pathway in regulating epithelial cell sheet movement. Genes & development 11, 1728-1737.
Imlach, W., and McCabe, B.D. (2009). Electrophysiological methods for recording synaptic potentials from the NMJ of Drosophila larvae. Journal of visualized experiments : JoVE.
Imlach, W.L., Beck, E.S., Choi, B.J., Lotti, F., Pellizzoni, L., and McCabe, B.D. (2012). SMN is required for sensory-motor circuit function in Drosophila. Cell 151, 427-439.
Itakura, Y., Kohsaka, H., Ohyama, T., Zlatic, M., Pulver, S.R., and Nose, A. (2015). Identification of Inhibitory Premotor Interneurons Activated at a Late Phase in a Motor Cycle during Drosophila Larval Locomotion. PloS one 10, e0136660.
Jaiswal, M.K. (2013). Calcium, mitochondria, and the pathogenesis of ALS: the good, the bad, and the ugly. Frontiers in cellular neuroscience 7, 199.
Jenett, A., Rubin, G.M., Ngo, T.T., Shepherd, D., Murphy, C., Dionne, H., Pfeiffer, B.D., Cavallaro, A., Hall, D., Jeter, J., et al. (2012). A GAL4-driver line resource for Drosophila neurobiology. Cell reports 2, 991-1001.
Kaneko, M., and Hall, J.C. (2000). Neuroanatomy of cells expressing clock genes in Drosophila: transgenic manipulation of the period and timeless genes to mark the perikarya of circadian pacemaker neurons and their projections. The Journal of comparative neurology 422, 66-94.
Karuppudurai, T., Lin, T.Y., Ting, C.Y., Pursley, R., Melnattur, K.V., Diao, F., White, B.H., Macpherson, L.J., Gallio, M., Pohida, T., et al. (2014). A hard-wired glutamatergic circuit pools and relays UV signals to mediate spectral preference in Drosophila. Neuron 81, 603-615.
Kim, M.J., and Johnson, W.A. (2014). ROS-mediated activation of Drosophila larval nociceptor neurons by UVC irradiation. BMC neuroscience 15, 14.
Kiryk, A., Aida, T., Tanaka, K., Banerjee, P., Wilczynski, G.M., Meyza, K., Knapska, E., Filipkowski, R.K., Kaczmarek, L., and Danysz, W. (2008). Behavioral characterization of GLT1 (+/-) mice as a model of mild glutamatergic hyperfunction. Neurotoxicity research 13, 19-30.
Kohsaka, H., Takasu, E., Morimoto, T., and Nose, A. (2014). A group of segmental premotor interneurons regulates the speed of axial locomotion in Drosophila larvae. Current biology : CB 24, 2632-2642.
Kong, Q., Chang, L.C., Takahashi, K., Liu, Q., Schulte, D.A., Lai, L., Ibabao, B., Lin, Y., Stouffer, N., Das Mukhopadhyay, C., et al. (2014). Small-molecule activator of glutamate transporter EAAT2 translation provides neuroprotection. The Journal of clinical investigation 124, 1255-1267.
Kong, Q., Takahashi, K., Schulte, D., Stouffer, N., Lin, Y., and Lin, C.L. (2012). Increased glial glutamate transporter EAAT2 expression reduces epileptogenic processes following pilocarpine-induced status epilepticus. Neurobiology of disease 47, 145-154.
Krishnan, K.S., Rikhy, R., Rao, S., Shivalkar, M., Mosko, M., Narayanan, R., Etter, P., Estes, P.S., and Ramaswami, M. (2001). Nucleoside diphosphate kinase, a source of GTP, is required for dynamin-dependent synaptic vesicle recycling. Neuron 30, 197-210.
Lai, S.L., and Lee, T. (2006). Genetic mosaic with dual binary transcriptional systems in Drosophila. Nature neuroscience 9, 703-709.
Laker, R.C., Xu, P., Ryall, K.A., Sujkowski, A., Kenwood, B.M., Chain, K.H., Zhang, M., Royal, M.A., Hoehn, K.L., Driscoll, M., et al. (2014). A novel MitoTimer reporter gene for mitochondrial content, structure, stress, and damage in vivo. The Journal of biological chemistry 289, 12005-12015.
Leboucher, G.P., Tsai, Y.C., Yang, M., Shaw, K.C., Zhou, M., Veenstra, T.D., Glickman, M.H., and Weissman, A.M. (2012). Stress-induced phosphorylation and proteasomal degradation of mitofusin 2 facilitates mitochondrial fragmentation and apoptosis. Molecular cell 47, 547-557.
Lee, J., and Wu, C.F. (2010). Orchestration of stepwise synaptic growth by K+ and Ca2+ channels in Drosophila. The Journal of neuroscience : the official journal of the Society for Neuroscience 30, 15821-15833.
Lee, T., and Luo, L. (1999). Mosaic analysis with a repressible cell marker for studies of gene function in neuronal morphogenesis. Neuron 22, 451-461.
Liu, W.W., and Wilson, R.I. (2013). Glutamate is an inhibitory neurotransmitter in the Drosophila olfactory system. Proceedings of the National Academy of Sciences of the United States of America 110, 10294-10299.
Lutas, A., Wahlmark, C.J., Acharjee, S., and Kawasaki, F. (2012). Genetic analysis in Drosophila reveals a role for the mitochondrial protein p32 in synaptic transmission. G3 2, 59-69.
MacNamee, S.E., Liu, K.E., Gerhard, S., Tran, C.T., Fetter, R.D., Cardona, A., Tolbert, L.P., and Oland, L.A. (2016). Astrocytic glutamate transport regulates a Drosophila CNS synapse that lacks astrocyte ensheathment. The Journal of comparative neurology 524, 1979-1998.
Mahr, A., and Aberle, H. (2006). The expression pattern of the Drosophila vesicular glutamate transporter: a marker protein for motoneurons and glutamatergic centers in the brain. Gene expression patterns : GEP 6, 299-309.
Martin-Blanco, E., Gampel, A., Ring, J., Virdee, K., Kirov, N., Tolkovsky, A.M., and Martinez-Arias, A. (1998). puckered encodes a phosphatase that mediates a feedback loop regulating JNK activity during dorsal closure in Drosophila. Genes & development 12, 557-570.
Marvin, J.S., Borghuis, B.G., Tian, L., Cichon, J., Harnett, M.T., Akerboom, J., Gordus, A., Renninger, S.L., Chen, T.W., Bargmann, C.I., et al. (2013). An optimized fluorescent probe for visualizing glutamate neurotransmission. Nature methods 10, 162-170.
Matsugami, T.R., Tanemura, K., Mieda, M., Nakatomi, R., Yamada, K., Kondo, T., Ogawa, M., Obata, K., Watanabe, M., Hashikawa, T., et al. (2006). From the Cover: Indispensability of the glutamate transporters GLAST and GLT1 to brain development. Proceedings of the National Academy of Sciences of the United States of America 103, 12161-12166.
Mayer, M.L., and Westbrook, G.L. (1987). The physiology of excitatory amino acids in the vertebrate central nervous system. Progress in neurobiology 28, 197-276.
McGuire, S.E., Le, P.T., Osborn, A.J., Matsumoto, K., and Davis, R.L. (2003). Spatiotemporal rescue of memory dysfunction in Drosophila. Science 302, 1765-1768.
McKeown, K.A., Moreno, R., Hall, V.L., Ribera, A.B., and Downes, G.B. (2012). Disruption of Eaat2b, a glutamate transporter, results in abnormal motor behaviors in developing zebrafish. Developmental biology 362, 162-171.
McKiernan, E.C. (2013). Effects of manipulating slowpoke calcium-dependent potassium channel expression on rhythmic locomotor activity in Drosophila larvae. PeerJ 1, e57.
Mehta, A., Prabhakar, M., Kumar, P., Deshmukh, R., and Sharma, P.L. (2013). Excitotoxicity: bridge to various triggers in neurodegenerative disorders. European journal of pharmacology 698, 6-18.
Menon, K.P., Carrillo, R.A., and Zinn, K. (2013). Development and plasticity of the Drosophila larval neuromuscular junction. Wiley interdisciplinary reviews Developmental biology 2, 647-670.
Mentis, G.Z., Blivis, D., Liu, W., Drobac, E., Crowder, M.E., Kong, L., Alvarez, F.J., Sumner, C.J., and O''Donovan, M.J. (2011). Early functional impairment of sensory-motor connectivity in a mouse model of spinal muscular atrophy. Neuron 69, 453-467.
Miech, C., Pauer, H.U., He, X., and Schwarz, T.L. (2008). Presynaptic local signaling by a canonical wingless pathway regulates development of the Drosophila neuromuscular junction. The Journal of neuroscience : the official journal of the Society for Neuroscience 28, 10875-10884.
Milton, V.J., Jarrett, H.E., Gowers, K., Chalak, S., Briggs, L., Robinson, I.M., and Sweeney, S.T. (2011). Oxidative stress induces overgrowth of the Drosophila neuromuscular junction. Proceedings of the National Academy of Sciences of the United States of America 108, 17521-17526.
Mitani, A., and Tanaka, K. (2003). Functional changes of glial glutamate transporter GLT-1 during ischemia: an in vivo study in the hippocampal CA1 of normal mice and mutant mice lacking GLT-1. The Journal of neuroscience : the official journal of the Society for Neuroscience 23, 7176-7182.
Nahm, M., Lee, M.J., Parkinson, W., Lee, M., Kim, H., Kim, Y.J., Kim, S., Cho, Y.S., Min, B.M., Bae, Y.C., et al. (2013). Spartin regulates synaptic growth and neuronal survival by inhibiting BMP-mediated microtubule stabilization. Neuron 77, 680-695.
Nesler, K.R., Sand, R.I., Symmes, B.A., Pradhan, S.J., Boin, N.G., Laun, A.E., and Barbee, S.A. (2013). The miRNA pathway controls rapid changes in activity-dependent synaptic structure at the Drosophila melanogaster neuromuscular junction. PloS one 8, e68385.
Ng, M., Roorda, R.D., Lima, S.Q., Zemelman, B.V., Morcillo, P., and Miesenbock, G. (2002). Transmission of olfactory information between three populations of neurons in the antennal lobe of the fly. Neuron 36, 463-474.
Orefice, L.L., Zimmerman, A.L., Chirila, A.M., Sleboda, S.J., Head, J.P., and Ginty, D.D. (2016). Peripheral Mechanosensory Neuron Dysfunction Underlies Tactile and Behavioral Deficits in Mouse Models of ASDs. Cell 166, 299-313.
Overstreet, L.S., Kinney, G.A., Liu, Y.B., Billups, D., and Slater, N.T. (1999). Glutamate transporters contribute to the time course of synaptic transmission in cerebellar granule cells. The Journal of neuroscience : the official journal of the Society for Neuroscience 19, 9663-9673.
Owusu-Ansah, E., Yavari, A., and Banerjee, U. (2008). A protocol for _in vivo_ detection of reactive oxygen species.
Pardo, A.C., Wong, V., Benson, L.M., Dykes, M., Tanaka, K., Rothstein, J.D., and Maragakis, N.J. (2006). Loss of the astrocyte glutamate transporter GLT1 modifies disease in SOD1(G93A) mice. Experimental neurology 201, 120-130.
Patel, P.H., Costa-Mattioli, M., Schulze, K.L., and Bellen, H.J. (2009). The Drosophila deoxyhypusine hydroxylase homologue nero and its target eIF5A are required for cell growth and the regulation of autophagy. The Journal of cell biology 185, 1181-1194.
Peco, E., Davla, S., Camp, D., S, M.S., Landgraf, M., and van Meyel, D.J. (2016). Drosophila astrocytes cover specific territories of the CNS neuropil and are instructed to differentiate by Prospero, a key effector of Notch. Development 143, 1170-1181.
Pulver, S.R., Bayley, T.G., Taylor, A.L., Berni, J., Bate, M., and Hedwig, B. (2015). Imaging fictive locomotor patterns in larval Drosophila. Journal of neurophysiology 114, 2564-2577.
Qin, G., Schwarz, T., Kittel, R.J., Schmid, A., Rasse, T.M., Kappei, D., Ponimaskin, E., Heckmann, M., and Sigrist, S.J. (2005). Four different subunits are essential for expressing the synaptic glutamate receptor at neuromuscular junctions of Drosophila. The Journal of neuroscience : the official journal of the Society for Neuroscience 25, 3209-3218.
Riesgo-Escovar, J.R., and Hafen, E. (1997). Common and distinct roles of DFos and DJun during Drosophila development. Science 278, 669-672.
Rival, T., Soustelle, L., Cattaert, D., Strambi, C., Iche, M., and Birman, S. (2006). Physiological requirement for the glutamate transporter dEAAT1 at the adult Drosophila neuromuscular junction. Journal of neurobiology 66, 1061-1074.
Rival, T., Soustelle, L., Strambi, C., Besson, M.T., Iche, M., and Birman, S. (2004). Decreasing glutamate buffering capacity triggers oxidative stress and neuropil degeneration in the Drosophila brain. Current biology : CB 14, 599-605.
Roselli, F., and Caroni, P. (2015). From intrinsic firing properties to selective neuronal vulnerability in neurodegenerative diseases. Neuron 85, 901-910.
Rothstein, J.D., Dykes-Hoberg, M., Pardo, C.A., Bristol, L.A., Jin, L., Kuncl, R.W., Kanai, Y., Hediger, M.A., Wang, Y., Schielke, J.P., et al. (1996). Knockout of glutamate transporters reveals a major role for astroglial transport in excitotoxicity and clearance of glutamate. Neuron 16, 675-686.
Rothstein, J.D., Patel, S., Regan, M.R., Haenggeli, C., Huang, Y.H., Bergles, D.E., Jin, L., Dykes Hoberg, M., Vidensky, S., Chung, D.S., et al. (2005). Beta-lactam antibiotics offer neuroprotection by increasing glutamate transporter expression. Nature 433, 73-77.
Ryder, E., Blows, F., Ashburner, M., Bautista-Llacer, R., Coulson, D., Drummond, J., Webster, J., Gubb, D., Gunton, N., Johnson, G., et al. (2004). The DrosDel collection: a set of P-element insertions for generating custom chromosomal aberrations in Drosophila melanogaster. Genetics 167, 797-813.
Sahoo, N., Hoshi, T., and Heinemann, S.H. (2014). Oxidative modulation of voltage-gated potassium channels. Antioxidants & redox signaling 21, 933-952.
Salvaterra, P.M., and Kitamoto, T. (2001). Drosophila cholinergic neurons and processes visualized with Gal4/UAS-GFP. Brain research Gene expression patterns 1, 73-82.
Sanyal, S., Sandstrom, D.J., Hoeffer, C.A., and Ramaswami, M. (2002). AP-1 functions upstream of CREB to control synaptic plasticity in Drosophila. Nature 416, 870-874.
Sekelsky, J.J., Newfeld, S.J., Raftery, L.A., Chartoff, E.H., and Gelbart, W.M. (1995). Genetic characterization and cloning of mothers against dpp, a gene required for decapentaplegic function in Drosophila melanogaster. Genetics 139, 1347-1358.
Senyilmaz, D., Virtue, S., Xu, X., Tan, C.Y., Griffin, J.L., Miller, A.K., Vidal-Puig, A., and Teleman, A.A. (2015). Regulation of mitochondrial morphology and function by stearoylation of TFR1. Nature 525, 124-128.
Sepp, K.J., Schulte, J., and Auld, V.J. (2001). Peripheral glia direct axon guidance across the CNS/PNS transition zone. Developmental biology 238, 47-63.
Sluss, H.K., Han, Z., Barrett, T., Goberdhan, D.C., Wilson, C., Davis, R.J., and Ip, Y.T. (1996). A JNK signal transduction pathway that mediates morphogenesis and an immune response in Drosophila. Genes & development 10, 2745-2758.
Song, W., Onishi, M., Jan, L.Y., and Jan, Y.N. (2007). Peripheral multidendritic sensory neurons are necessary for rhythmic locomotion behavior in Drosophila larvae. Proceedings of the National Academy of Sciences of the United States of America 104, 5199-5204.
Spacek, J. (1985). Three-dimensional analysis of dendritic spines. III. Glial sheath. Anatomy and embryology 171, 245-252.
Spradling, A.C., Stern, D., Beaton, A., Rhem, E.J., Laverty, T., Mozden, N., Misra, S., and Rubin, G.M. (1999). The Berkeley Drosophila Genome Project gene disruption project: Single P-element insertions mutating 25% of vital Drosophila genes. Genetics 153, 135-177.
Stacey, S.M., Muraro, N.I., Peco, E., Labbe, A., Thomas, G.B., Baines, R.A., and van Meyel, D.J. (2010). Drosophila glial glutamate transporter Eaat1 is regulated by fringe-mediated notch signaling and is essential for larval locomotion. The Journal of neuroscience : the official journal of the Society for Neuroscience 30, 14446-14457.
Stork, T., Bernardos, R., and Freeman, M.R. (2012). Analysis of glial cell development and function in Drosophila. Cold Spring Harbor protocols 2012, 1-17.
Stork, T., Sheehan, A., Tasdemir-Yilmaz, O.E., and Freeman, M.R. (2014). Neuron-glia interactions through the Heartless FGF receptor signaling pathway mediate morphogenesis of Drosophila astrocytes. Neuron 83, 388-403.
Sweeney, S.T., Broadie, K., Keane, J., Niemann, H., and O''Kane, C.J. (1995). Targeted expression of tetanus toxin light chain in Drosophila specifically eliminates synaptic transmission and causes behavioral defects. Neuron 14, 341-351.
Sykiotis, G.P., and Bohmann, D. (2008). Keap1/Nrf2 signaling regulates oxidative stress tolerance and lifespan in Drosophila. Developmental cell 14, 76-85.
Takahashi, K., Kong, Q., Lin, Y., Stouffer, N., Schulte, D.A., Lai, L., Liu, Q., Chang, L.C., Dominguez, S., Xing, X., et al. (2015). Restored glial glutamate transporter EAAT2 function as a potential therapeutic approach for Alzheimer''s disease. The Journal of experimental medicine 212, 319-332.
Tanaka, K., Watase, K., Manabe, T., Yamada, K., Watanabe, M., Takahashi, K., Iwama, H., Nishikawa, T., Ichihara, N., Kikuchi, T., et al. (1997). Epilepsy and exacerbation of brain injury in mice lacking the glutamate transporter GLT-1. Science 276, 1699-1702.
Tzingounis, A.V., and Wadiche, J.I. (2007). Glutamate transporters: confining runaway excitation by shaping synaptic transmission. Nature reviews Neuroscience 8, 935-947.
Van Den Bosch, L., Van Damme, P., Bogaert, E., and Robberecht, W. (2006). The role of excitotoxicity in the pathogenesis of amyotrophic lateral sclerosis. Biochimica et biophysica acta 1762, 1068-1082.
Vandenberg, R.J., and Ryan, R.M. (2013). Mechanisms of glutamate transport. Physiological reviews 93, 1621-1657.
Vasin, A., Zueva, L., Torrez, C., Volfson, D., Littleton, J.T., and Bykhovskaia, M. (2014). Synapsin regulates activity-dependent outgrowth of synaptic boutons at the Drosophila neuromuscular junction. The Journal of neuroscience : the official journal of the Society for Neuroscience 34, 10554-10563.
Ventura, R., and Harris, K.M. (1999). Three-dimensional relationships between hippocampal synapses and astrocytes. The Journal of neuroscience : the official journal of the Society for Neuroscience 19, 6897-6906.
Verma, P., Augustine, G.J., Ammar, M.R., Tashiro, A., and Cohen, S.M. (2015). A neuroprotective role for microRNA miR-1000 mediated by limiting glutamate excitotoxicity. Nature neuroscience 18, 379-385.
Verret, L., Mann, E.O., Hang, G.B., Barth, A.M., Cobos, I., Ho, K., Devidze, N., Masliah, E., Kreitzer, A.C., Mody, I., et al. (2012). Inhibitory interneuron deficit links altered network activity and cognitive dysfunction in Alzheimer model. Cell 149, 708-721.
Watson, M.R., Lagow, R.D., Xu, K., Zhang, B., and Bonini, N.M. (2008). A drosophila model for amyotrophic lateral sclerosis reveals motor neuron damage by human SOD1. The Journal of biological chemistry 283, 24972-24981.
Weber, U., Paricio, N., and Mlodzik, M. (2000). Jun mediates Frizzled-induced R3/R4 cell fate distinction and planar polarity determination in the Drosophila eye. Development 127, 3619-3629.
Wharton, K.A., Cook, J.M., Torres-Schumann, S., de Castro, K., Borod, E., and Phillips, D.A. (1999). Genetic analysis of the bone morphogenetic protein-related gene, gbb, identifies multiple requirements during Drosophila development. Genetics 152, 629-640.
White, B.H., Osterwalder, T.P., Yoon, K.S., Joiner, W.J., Whim, M.D., Kaczmarek, L.K., and Keshishian, H. (2001). Targeted attenuation of electrical activity in Drosophila using a genetically modified K(+) channel. Neuron 31, 699-711.
Wolstenholme, A.J. (2012). Glutamate-gated chloride channels. The Journal of biological chemistry 287, 40232-40238.
Xu, X., Yin, Z., Hudson, J.B., Ferguson, E.L., and Frasch, M. (1998). Smad proteins act in combination with synergistic and antagonistic regulators to target Dpp responses to the Drosophila mesoderm. Genes & development 12, 2354-2370.
Yeh, E., Gustafson, K., and Boulianne, G.L. (1995). Green fluorescent protein as a vital marker and reporter of gene expression in Drosophila. Proceedings of the National Academy of Sciences of the United States of America 92, 7036-7040.
Zhang, Y.Q., Rodesch, C.K., and Broadie, K. (2002). Living synaptic vesicle marker: synaptotagmin-GFP. Genesis 34, 142-145.




QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top