跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.134) 您好!臺灣時間:2025/12/19 18:13
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:連逸韻
研究生(外文):Yi-Yun Lian
論文名稱:利用二階段固態發酵模式製備發酵豆粕以去除寡糖暨過敏性蛋白質
論文名稱(外文):Preparation of fermented soybean meals for removal of oligosaccharides and allergenic proteins by using two stage solid state fermentation
指導教授:陳錦樹陳錦樹引用關係
學位類別:碩士
校院名稱:國立中興大學
系所名稱:食品暨應用生物科技學系
學門:醫藥衛生學門
學類:營養學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:中文
論文頁數:117
中文關鍵詞:大豆粕抗營養因子固態發酵麴菌屬乳酸菌
外文關鍵詞:soybean mealanti-nutritional factorssolid state fermentationAspergillus sp.lactic acid bacteria
相關次數:
  • 被引用被引用:10
  • 點閱點閱:1337
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
中文摘要
大豆粕 (soybean meal) 富含蛋白質,常作為動物飼料中植物性蛋白主要來源之一,惟具有抗營養因子,降低其營養價值及利用率。米麴菌 Aspergillus oryzae 固態發酵豆粕,可降解其部分耐熱抗營養因子之過敏性蛋白質及致脹氣寡糖。為提高消除過敏性蛋白之效果,避免麴菌生長至產孢階段,並且增進發酵豆粕產品風味,本研究利用麴菌 A. oryzae 及乳酸菌 Lactobacillus casei 進行豆粕之二階段固態發酵,並且以孢子懸浮液及菌絲作為兩種不同之接種源形式,探討消除大豆粕之過敏性蛋白及脹氣性寡醣之效果,最後分析發酵豆粕之化學成分,期能建立最適之發酵模式。
首先以米麴菌 A. oryzae 及乳酸菌 L. casei 之三種二階段發酵模式:先乳酸菌後麴菌發酵 (L-A)、乳酸菌與麴菌共同發酵 (L/A),以及先麴菌後乳酸菌 (A-L) 進行大豆粕發酵。結果顯示 A-L 二階段發酵豆粕48小時可消除 β-conglycinin、glycinin 之 acidic polypeptides 次單元,以及致脹氣之水蘇糖與棉子糖,而降解大豆蛋白之酸性蛋白酶 及致脹氣寡糖之α-半乳糖苷酶主要來自米麴菌第一階段發酵,第二階段乳酸菌發酵提供偏酸性基質環境,以利酵素水解作用更加完全。若改以 A. oryzae 之菌絲作為接種源,其發酵豆粕 20 小時後,再提高水分含量及作用溫度後,繼續水解 4 小時,其在降解抗營養因子之情形,與以孢子接種源形式之 A-L 48 小時發酵豆粕有相同顯著效果。
目前常見之米麴菌接種源主以孢子為主,本研究結果顯示若以麴菌菌絲作為接種源形式,可於較短之發酵時間達到相同發酵結果,尤其在進行大量發酵時,利用菌絲接種可能更經濟實惠。最後,本研究以 A-L 及菌絲接種源之小量發酵條件,進行豆粕 15 kg 初步放大發酵,發現僅以麴盤式培麴伴以人工翻麴,很難控制隨麴菌旺盛生長攀高之麴溫,而麴溫過高不但對麴菌造成很大傷害,而且會降低酵素產量及穩定性,此次初步放大發酵效果雖不如小量發酵,亦可降解部分過敏性蛋白質及致脹氣寡糖,且提高胺基態氮含量。
Abstract
Soybean meals have been used extensively as one of major plant protein sources from plant origins in animal feedstuffs because of their high protein content (around 44%). However, anti-nutritional factors that commonly exist in these soybean meals have limited their nutritive values and utilization. Fermented soybean meals by Aspergillus oryzae removed most of thermo stable anti-nutritional factors such as allergenic proteins (mainly β-conglycinin and glycinin) and flatulence-causing factors (mainly stachyose and raffinose). However, in order to reduce most allergenic proteins in a greater extent before koji-sporulation, and to improve flavors of koji-fermented soybean meals, a two-stage solid state fermentation using combination of a fungal strain A. oryzae and a lactic acid bacterium Lactobacillus casei were used in this study. Effects of inoculum types, in spore or in mycelial form, on the removal of allergenic proteins and oligosaccharides were also examined. Finally, proximate analysis of fermented soybean meal was performed, and the optimal fermentation mode was suggested.
Three kinds of fermentation mode were examined in the two-stage solid state fermentation. These included the combination of treating soybean meals with A. oryzae first, followed by L. casei (A-L); the one with L. casei first, followed by Asp. oryzae (L-A), and the third one with two strains being used simultaneously (A/L).
Results showed β-conglycinin, acidic polypeptides subunits of glycinin, stachyose and raffinose of soybean meals were hydrolyzed by A-L 48 hr-fermentation. The 2nd stage fermentation exerted by lactic acid bacteria contributed the acidic environment to meals and facilitated the enzymatic hydrolysis by 1st stage koji. Alternatively, use of mycelial Asp. oryzae as inoculum for the initial 20 h-fermentation, followed by increasing moisture content and temperature of meals and maintained for 4 h. The results revealed that their hydrolysis effect on removal of allergenic proteins and oligosaccharides was almost similar to those by A-L mode for 48 h fermentation (use spores as inoculum).
The fermentation conditions of soybean meals by A-L mode with spores or mycelial inoculum were used in the 15 kg scale fermentation. Results showed it is not facile to control the temperature of fermented meals when the tray method was used, due to the active fungal growth during fermentation. Higher temperatures of meals hurt the Asp. oryzae deeply, and led to lower enzyme production or less stability of enzymes. Although use of Asp. oryzae in spores form was common for a large scale or mass production, using mycelial Asp. oryzae as inoculum has some advantages over spore ones, yet the hydrolysis rate was the same. The removal of these thermo stable anti-nutritional factors in the 15-kg scale of soybean meals fermentation was not effective as expected, but most of allergenic proteins and flatulence-causing oligosaccharides were degraded, and the amino nitrogen content of soybean meals was also increased after fermentation.
目次

中文摘要 і
Abstract ііі
第一章 前言 1
第二章 文獻整理 3
第一節 大豆及大豆粕 3
一、 大豆及大豆粕之特性 3
二、 大豆蛋白及抗營養因子 6
三、 大豆粕於飼料上之應用 12
第二節 麴菌之固態發酵 13
一、 固態發酵 13
(一) 固態發酵之特性 13
(二) 接種源之形式 17
(三) 麴盤式發酵 20
二、 Aspergillus oryzae 及 Lactobacillus casei 21
(一) Aspergillus oryzae 21
(二) Lactobacillus casei 22
三、 利用 A. oryzae 固態發酵消去豆粕中之 ANFs 22
第三章 材料與方法 24
第一節 實驗材料設備 24
一、 材料 24
(一) 原料 24
(二) 實驗菌株 24
(三) 化學藥劑 25
(四) 儀器設備 27
(五) 套裝軟體 27
二、 實驗方法 27
(一) 實驗大綱 27
(二) 發酵方法 28
(三) 分析方法 32
三、 統計分析及圖形繪製 38
第四章 結果與討論 39
第一節 小量發酵 39
一、 二階段固態發酵 39
(一) 三種二階段發酵模式之確立 39
(二) A-L二階段發酵模式之最適化 62
二、 菌絲固態發酵 66
(一) 最適均質時間之探求 66
(二) 最適水分含量之探求 69
(三) 最適搖瓶接種量之探求 73
(四) 最適添水量、作用溫度及作用時間之探求 76
第二節 較大量發酵 84
一、以孢子或菌絲接種源形式固態發酵豆粕之規模放大試驗
(15 kg) 84
(一) 發酵情形 84
(二) ANF之降解 93
(三) 化學成分之分析 98
第五章 結論 102
一、 二階段固態發酵 102
二、 菌絲固態發酵 103
三、 孢子及菌絲接種源形式發酵豆粕之放大 104
四、 總結 104
第六章 參考文獻 106
附錄 116

表目次

表一、不同生產方式之大豆粕其主成分分析 5
表二、 大豆中過敏性蛋白質 9
表三、 固態發酵製程與液態發酵製程之差異性 14
表四、 三種二階段發酵模式之培養條件 31
表五、 二階段發酵豆粕之可溶性醣類及寡糖水解情形 54
表六、 豆粕經 A-L 二階段模式發酵後其大豆異黃酮含量之變化 61
表七、 不同水分條件之相對水分含量 62
表八、 麴菌Asp. oryzae菌絲球經不同均質時間處理後之菌絲平板
計數 67
表九、 不同搖瓶接種量及均質時間相對應之平板計數及水分含量 74
表十、 接種麴菌菌絲固態發酵豆粕中糖類含量之變化情形 83
表十一、 使用菌絲或孢子形式之Asp. oryzae為接種源進行豆粕
(15 公斤) 固態發酵時糖類含量之變化情形 97




圖目次

圖一、 大豆蛋白之SDS-PAGE電泳圖 7
圖二、 水蘇糖、棉子糖和蔗糖之結構式 11
圖三、 絲狀真菌生長模式 18
圖四、 絲狀真菌於平面基質生長之菌絲分布 19
圖五、 先乳酸菌L. casei後麴菌Asp. oryzae二階段發酵豆粕
期間pH及水分含量之變化 41
圖六、 先乳酸菌 L. casei後麴菌 Asp. oryzae 二階段發酵豆粕
期間 α –半乳糖苷酶活性之變化 42
圖七、 麴菌 Asp. oryzae 及乳酸菌 L. casei 同時發酵豆粕期間
pH 及水分含量之變化 44
圖八、 麴菌 Asp. oryzae 及乳酸菌 L. casei 同時發酵豆粕期間
之 α –半乳糖苷酶活性變化 45
圖九、 先麴菌 Asp. oryzae 後乳酸菌 L. casei 二階段發酵豆粕
期間水分含量之變化 47
圖十、 先麴菌 Asp. oryzae 後乳酸菌 L. casei 二階段發酵豆粕
期間pH 之變化 48
圖十一、 先麴菌Asp. oryzae後乳酸菌L. casei二階段發酵豆粕
之α –半乳糖苷酶活性變化 49
圖十二、 大豆粕利用麴菌及乳酸菌進行三種二階段發酵模式處
理後,其過敏蛋白質之 SDS-PAGE 圖51
圖十三、 三種麴菌 Asp. oryzae 及乳酸菌 L. casei 二階段發酵
模式所得發酵豆粕之粗蛋白含量 56
圖十四、 三種麴菌 Asp. oryzae 及乳酸菌 L. casei 二階段發酵
模式豆粕之胺基態氮含量 57
圖十五、 經Asp. oryzae發酵24及48小時之豆粕其蛋白質降解
產物之SDS-PAGE及Western Blot圖 59
圖十六、 豆粕於第二階段添加 1 倍及 1.2 倍水量且發酵10
至 18 小時期間過敏性蛋白質之 SDS-PAGE 圖 64
圖十七、 豆粕於第二階段添加 1.5 倍及 2 倍水量且發酵10
至 18 小時期間過敏性蛋白質之 SDS-PAGE 圖 65
圖十八、 經不同均質時間處理之 Asp. oryzae 菌絲固態發酵豆
粕對酸性蛋白酶活性之影響 68
圖十九、 不同水分含量之豆粕經過 Asp. oryzae 之菌絲固態發
酵對酸性蛋白酶活性變化之影響 71
圖二十、 不同水分含量之豆粕經過 Asp. oryzae 之菌絲固態發
酵對α-半乳糖苷酶活性變化之影響 72
圖二十一、 不同搖瓶接種量之菌絲進行豆粕固態發酵期間過敏
性蛋白質降解之SDS-PAGE圖 75
圖二十二、 豆粕經麴菌菌絲固態發酵20小時後調整水分含量並
於45℃水解作用4小時其酸性蛋白酶活性之變化 77
圖二十三、 豆粕經麴菌菌絲固態發酵20小時後調整水分含量並
於45℃水解作用4小時其α-半乳糖苷酶活性之變化 78
圖二十四、 豆粕經麴菌菌絲固態發酵20小時後調整水分含量,並
於50℃水解作用4小時其α-半乳糖苷酶活性之變化 79
圖二十五、 豆粕經菌絲固態發酵20小時後,於45℃及不同水量
與作用時間下其過敏性蛋白質降解之 SDS-PAGE 圖 81
圖二十六、 豆粕經菌絲固態發酵20小時後,於50℃及不同水量
與作用時間下其過敏性蛋白質降解之 SDS-PAGE 圖 82
圖二十七、 接種麴菌孢子放大發酵豆粕 (15公斤) 其生長期間
溫度及相對溼度之變化情形 85
圖二十八、 接種麴菌菌絲放大發酵豆粕 (15公斤) 其生長期間
溫、溼度之變化情形 86
圖二十九、 接種麴菌孢子放大發酵豆粕 (15公斤) 其生長期間
酵素活性及水分含量之變化情形 88
圖三十、 接種麴菌菌絲放大發酵豆粕 (15公斤) 其生長期間酵
素活性及水分含量之變化情形 89
圖三十一、 接種麴菌孢子進行大量固態發酵之豆粕其乾燥期間
水分含量之變化 91
圖三十二、 發酵 22 小時之豆粕表面菌絲分佈 (白色部分) 之
顯微放大圖 (1000倍) 92
圖三十三、 豆粕接種孢子進行放大發酵期間其過敏性蛋白質
降解之 SDS-PAGE 圖 94
圖三十四、 豆粕經菌絲進行放大發酵期間其過敏性蛋白質
降解之SDS-PAGE圖 95
圖三十五、使用菌絲或孢子形式之Asp. oryzae為接種源進行豆
粕(15公斤)固態發酵時粗蛋白及PDI含量之變化 100
圖三十六、使用菌絲或孢子形式之Asp. oryzae為接種源進行豆
粕(15公斤)固態發酵時胺基態氮含量之變化 101
一、圖書
李秀、賴滋漢。1992。食品分析與檢驗。富林出版社。台中,台灣。
陳世爵、陳潤卿。1981。黃豆油與黃豆食品手冊,台灣。
彭志英。2004。食品酵素學。 九州圖書文物有限公司。台北,台灣。
楊培牆、陳世爵。1979。醬油製造專輯。美國黃豆協會。台北,台灣。
鄭長義。1991。飼料製造技術。華香園出版社。台北,台灣。
闕文仁、鄧世正。1977。實用醬油釀造學。環宇出版社。台北,台灣。
蘇遠志、黃世佑。1971。微生物化學工程學。天然書社。台北,台灣。
二、期刊論文
李政宏。2003。醬油製麴。食品市場資訊。92(7) : 13-15。
林禮斌。2004。蛋白水解酵素處理大豆粕於離仔豬飼糧之應用性。國立中興大學畜產系碩士論文,台中市。
曾浩洋、董啟功。1985。以Rhizopus thailandensis醱酵脫脂黃豆粉之酵素活性及生化組成變化探討。中國農業化學會誌. 23(1、2):111-118。
黃國榮、余嚴尊、李綉鈴。1993。台灣發酵麴菌之研究 (I) 保存麴菌之酵素生成性。食品科學 20(6):567-573。
詹惠雯。2005。利用Aspergillus oryzae固態發酵處理黃豆粕以去除寡醣暨過敏性蛋白質之研究。國立中興大學食品科學系碩士論文,台中市。
羅國仁、余立文。2004。固態發酵製程的開發與應用。食品工業。36(10) : 2-10 。

三、Books
A. O. A. C. 1995. Official methods of analysis of the Association of Official Analytic Chemists, 16th edition, Horowitz, W. (Eds). Washington D. C., USA.
Butler, W. H. 1975. Mycotoxins. In: The filamentous fungi, Vol. 1. Smith, J. E. and Berry, D. R. (Eds). Edward Arnold Ltd., London, United Kingdom, pp. 320-327.
Coon, C., Akavanichan, O. and Chang, T. 1988. The effect of oligosaccharides on the nutritive value of soybean meal. In: Proceedings of soybean utilization alternatives. McCann, L. (Eds). University of Minn. St. Paul, MN, pp. 203-214.
Gowthaman, M. K., Krishna, C., and Moo-Young, M. 2001. Fungal solid state fermentation—An overview. In: Applied Mycology and Biotechnology, Vol. 1. Agriculture and Food Productions. Khachatourians, G. G. and Arora, D. K. (Eds). Elsevier Science, The Netherlands, pp. 305–352.
Grove, S. N. 1978. The cytology of hyphal tip growth. In: The filamentous fungi, Vol. 1. Smith, J. E. and Berry, D. R. (Eds). Edward Arnold Ltd., London, United Kingdom, pp. 28-50.
Liu, K. 1999. Soybeans : chemistry, technology, and utilization. Chapman and Hall, United States, pp. 25-411.
Moo-Young, M., Moreira, A. R., and Tengerdy, R. P. 1983. Principles of solid state fermentation. In: The Filamentous Fungi. Smith, J. E., Berry, D. R., and Kristiansen, B. (Eds). Edward Arnold Ltd., London, United Kingdom, pp. 117–144.
Murthy, M. V. R., Karanth, N. G. and Rao, K. S. M. S. R. 1993. Biochemical engineering aspects of solid-state fermentation. In: Advances applied microbiology, Vol. 38. Neidleman, S. and Laskin, A. I. (Eds). Academic press Ltd., London, United Kingdom, pp. 99-147.
Rahardjo, Y. S. P. 2005. Fungal mats in solid-state fermentation. PhD thesis, Wageningen university, Wageningen, The Netherlands, pp. 107-134.
Schwab, C. G. 1995. Protected proteins and amino acids for ruminants. In: Biotechnology in Animal Feeds and Animal Feeding. VCH. New York, United States, pp. 115.
Sissions, J. W. and Tolman, H. 1991. Anti-nutritional properties of soybean antigens in calves. In: Toxic Factors in Crop Plants. Proceedings of the Second Spring Conference. D’Mello, J. P .F. and Duffus, C. M. (Eds). Edinburgh, United Kingdom, pp. 62-85.
Stokes, C. R., Miller, B. G. and Bourne, F. J. 1987. Animal models of food sensitivity. In: Food Allergy and Intolerance. Brostoff, J. & Challacombe, S. J. (Eds). Bailliere Tindall. London, United Kingdom, pp. 286-300.

四、Journal Articles
Abdullah, A. L., Tengerdy, R. P., and Murphy, V. G. 1985. Optimization of solid state fermentation of wheat straw. Biotechnol Bioeng. 27 : 20–27.
Abdullah, A., Baldwin, R. E. and Minor, H. 1984. Germination effects on flatus-causing factors and antinutritients of mung beans and two strains of small-seeded soybeans. J Food Prot. 47 : 411.
Anson, M. L. 1938. The estimation of pepsin, trypsin, papain and cathepsin with hemoglobin. J Gen Physiol. 22:79-89.
Babiker, E. E., Hiroyuki, A., Matsudomi, N., Iwata, H., Ogawa, T., Bando, N. and Kato, A. 1998. Effect of polysaccharide conjugation or transglutaminase treatment on the allergenicity and functional properties of soy protein. J Am Chem Soc. 46 : 866-871.
Badley, R. A., Atkinson, D., Huauser, H., Oldani, D., Green, J. P. and Stubbs, J. M. 1975. The structure, physical and chemical properties of the soybean protein glycinin. Biochim Biophys Acta. 412-214.
Barry, V. M. 1988. α-D-glactosidase from Lucerne and guar seed. Methods Enzymol. 160:627-628.
Birk, Y. 1985. The Bowman-Birk inhibitor. Int J Pept Protein Res. 25 : 113-131.
Birk, Y. 1996. Protein proteinase inhibitors in legume seed- overview. Arch Latinoam Nutr. 44 : 26-36.
Bradford, M. M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein dye binding. Anal Biochem. 72:248-254.
Calloway, D. H., Hickey, C. A. and Murphy, E. L. 1971. Reduction of intestinal gas-forming properties of legumes by traditional and experimental food processing methods. J Food Sci. 36 : 251.
Chang, C. J., Tanksley, T. D., Kanbe, D. A. and Zebrowska, T. 1987. Effects of different heat treatments during processing on nutrient digestibility of soybean meal in growing swine. J Anim Sci. 65 : 1273-1282.
Christensen, H. R., Bruun, S. W. and Frokiaer, H. 2003. Antigenic specificity of serum antibodies in mice fed soy protein. Int Arch Allergy Immunol. 132 : 58-67.
Davidson, R., Gertler, A. and Hofmann, T. 1975. Aspergillus oryzae acid proteinase. Purification and properties, and formation of chymotrypsin. Biochem J. 147 : 45-53.
Derbyshire, E., Wright, D. J. and Boulter, D. 1976. Legumin and vicilin, storage proteins of legume seeds. Phytochemistry. 15 : 3.
Dunsford, B. R., Knabe, D. A. and Haensly, W. E. 1989. Effect of dietary soybean meal on the microscopic anatomy of the small intestine in the early-weaned pig. Anim Sci J. 67:1855-1863.
Duranti, M., Lovati, M. R. and Dani, V., 2004. The alpha’ subunit from soybean 7S globulin lowers plasma lipids and upregulates liver beta-VLDL receptors in rats fed a hypercholesterolemic diets. J Nutr. 134 : 1334-1339.
Ebune, A., Al-Ashch, S. and Duvnjak, Z. 1995. Production of phytase during solid state fermentation using Aspergillus ficuum NRRL 3135 in canola meal. Bioresour Technol. 53 : 7-12.
Friedman, M. and Brandon, D. L. 2001. Nutritional and health benefits of soy proteins. J Agric Food Chem. 49 : 1069-1085.
Fukushima, D. 1991. Recent progress of soybean protein foods Chemistry, technology, and nutritional. Food Rev Int. 7:323-351.
Garro, S. M., Font de Valdez, G.. and Oliver, G.. and Savoy de Giori, G.. 1998. Growth characteristics and fermentation products of Streptococcus salivarius subsp. thermophlius, Lactobacillus casei and L. fermentum in soymilk. Z Lebensm Unters Forsch. 206 : 72-75.
Grieshop, C. M., Kadzere, C. T., Clapper, G. M., Flickinger, E. A., Bauer, L. L., Frazier, R. L. and Fahey, G. C. 2003. Chemical and nutritional characterisitics of United States soybeans and soybean meals. J Agric Food Chem. 51 : 7684-7691.
Hong, K. J., Lee, C. H. and Kim, S. W. 2004. Aspergillus oryzae GB-107 fermentation improves nutritional quality of food soybeans and feed soybean meals. J Med Food. 4 : 430-435.
Hrckova, M., Rusnakova, M. and Zemanovic, J. 2002. Enzymatic hydrolysis of defatted soy flour by three different proteases and their effect on the functional properties of resulting protein hydrolysates. Czech. J Food Sci. 20:7-14.
Hrckova, M., Rusnakova, M. and Zemanovic, J. 2002. Enzymatic hydrolysis of defatted soy flour by three different proteases and their effect on the functional properties of resulting protein hydrolysates. Czech. J Food Sci. 20:7-14.
Ibrahim, S. S., Habiba, R. A., Shatta, A. A. and Embaby, H. E. 2002. Effect of soaking, germination, cooking and fermentation on anti-nutritional factors in cowpeas. Nahurung/Food. 46(2): 92- 95.
Kim, S. Y., Park, P. S. W. and Rhee, K. C. 1990. Functional properties of proteolytic enzyme modified soy protein isolate. J Agric Food Chem. 38:651-656.
Koide, T. and Ikenaka, T. 1973. Studies on soybean trypsin inhibitors 3. Amino acid sequence of the carboxyl terminal region and the complete amino acid sequence of soybean trypsin inhibitor (Kunitz). Eur J Biochem. 32 : 417-431.
Krishna, C. 2005. Solid-state fermentation systems- an overview. Crit Rev Biotechnol. 25 : 1-30.
Krishna, C., and Nokes, S. E. 2001. Influence of inoculum size on phytase production and growth in solid state fermentation by Aspergillus niger. Trans ASAE. 44 : 1031–1036.
Lalles, J. P., Dreau, D., Salmon, H., and Toullec, R. 1996. Identification of soybean allergens and immune mechanisms of dietary sensitivities in preruminant calves. Res Vet Sci. 60 : 111-116.
LeBlane, J. G., Silvestroni, A., Connes, C., Juillard, V., Giori, G. S., Piard, J. C. and Sesma, F. 2004. Reduction of non-digestible oligosaccharides in soymilk: application of engineered lactic acid bacteria that produce α-galactosidase. Genet Mol Res. 30(3):432-440.
Li, D. F., Nelssen, J. L., Reddy, P. G., Blecha, F., Hancock, J. D., Allee, G. L., Goodband, R. D. and Klemm, R. D. 1990. Transient hypersensitivity to soybean meal in the early-weaned pig. J Anim Sci. 68 : 1790-1799.
Li, D. F., Nelssen, J. L., Reddy, P. G., Blecha, F., Klemm, R. D., Giesting, D. W., Hancock, J. D., Allee, G. L. and Goodband, R. D. 1991. Measuring suitability of soybean products for early-weaned pigs with immunological criteria. J Anim Sci. 69 : 3299.
Liener, I. E. 1953. Soyin, a toxin protein from the soybean. І. Inhibition of rat growth. J Nutr. 49 : 527.
Liener, I. E. 1994. Implication of antinutritional components in soybean foods. CRC Crit Rev Food Sci Nutr. 34(1) : 31-67.
Liu, K. S., Orthoefer, F. and Thompson, K. 1995. The case for food-grade food varieties. INFORM. 6(5) : 593-599.
Lonsane, B. K., Ghildyal, N. P., Budiatman, S., and Ramakrishna, S. V. 1985. Engineering aspects of solid-state fermentation. Enzyme Microb. Technol. 7 : 258–265.
Marquez, M. C. and Alonso, R. 1999. Inactivation of trypsin inhibitor in chickpea. J Food Compost Anal. 12:211- 217.
Marsman, G. J. P., Gruppen, H., Mul, A. J. and Voragen, A. G. J. 1997. In vitro accessibility of untreated, toasted, and extruded soybean meals for protease and carbohydrates. J Agric Food Chem. 45 : 4088-4095.
Maruyama, N., Fukuda, T., Saka, S., Inui, N., Kotoh, J., Miyagawa, M., Hayashi, M., Sawada, M., Moriyama, T. and Utsumi, S. 2003. Molecular and structural analysis of electrophoretic variants of soybean seed storage proteins. Phytochemistry. 64 : 701-708.
Maxwell, M. E. 1952. Enzymes of Aspergillus oryzae. Australian journal of scientific research. Ser B: Biol Sci. 5 : 43-55.
Messina, M. J. 1999. Legumes and soybeans: overview of their nutritional profiles and health effects. Am J Clin Nutr. 70 : 439-450.
Miller, B.G. Newby, T. J., Stokes, C. R. and Bourne, F. J. 1972. Influence of diet on postweaning malabsorption and diarrhea in the pigs. Res Vet Sci. 36 : 187-193.
Mishra, V. and Prasad, D. N. 2005. Application of in vitro methods for selection of Lactobacillus casei strains as potential probiotics. Int J Food Microbiol. 103:109-115.
Mitchell, D. A., Meien, O. F., Krieger, N. and Dalsenter, F. D. H. 2004. A review of recent developments in modeling of microbial growth kinetics and intraparticle phenomena in solid-state fermentation. Biochem Eng J. 17: 15-26.
Olguin, M. C., Hisano, N., D’Ottavio, A. E., Zingale, M. I., Revelant, G. C. and Calderari, S. A. 2003. Nutritional and anti-nutritional aspects of an Argentinan soy flour assessed on weanling rats. Journal of Food Compo Anal. 16:441-449.
Pandey, A. 2003. Solid-state fermentation. Biochem Eng J. 13 : 81-84.
Papagianni, M., Nokes, S. E. and Filer, K. 1999. Production of phytase by Aspergillus niger in submerged and solid-state fermentation. Process Biochem. 35 : 397-402.
Peng, I. C., Dayton, W. R., Quass, D. W., and Allen, C. E. 1982. Investigations of soybean 11S protein and myosin interaction by solubility, turbidity, and titration studies. J Food Sci. 47:1976.
Qin, G. N., ter Elst, E. R., Bosch, M.W. and Van der Poel, A. F. B. 1996. Thermal processing of whole soya beans: Studies on the inactivation of antinutritional factors and effects on ileal digestibility in piglets. Anim Feed Sci Technol. 57 : 313-324.
Rackis, J. J., Honig, D. H., Sessa, D. J. and Steggerda, F. R. 1970a. Flavor and flatulence factors in soybean protein products. J Agric Food Chem. 18 : 977.
Rackis, J. J., Sessa, D. J., Steggerda, F. R., Shimizu, T., Anderson, T. and Pearl, S. L. 1970b. Soybean factors relating to gas production by intestinal bacteria. J Food Sci. 35 : 634-639.
Rios-Iriarte, B. J. and Barnes, R. H. 1966. The effect of overheating on certain nutritional properties of the protein of soybeans. Food Technol. 20 : 836.
Rommagnolo, D., Polan, C. E. and Barbeau, W. E. 1990. Degradability of soybean meal protein fractions as determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. J Dairy Sci. 73:2379-2385.
Schingoethe, D. J. 1996. Balancing the amino acid needs of dairy cows. Anim Feed Sci Technol. 60 : 153-160.
Shewry, P. R., Napier, J. A. and Tatham, A. S. 1995. Seed storage proteins: structure and biosynthesis. Plant Cell. 7 : 945–956.
Shin, J. Y., Jeon, W. M., Kim, G. B. and Lee, B. H. 2004. Purification and characterization of intracellular proteinase from Lactobacillus casei ssp. casei LLG. J Dairy Sci. 87 : 4097–4103.
Sissons, J. W., Nyrup, A., Kilshaw, P. J. and Smith, R. H. 1981. Ethanol denaturation of soya bean protein antigens. J Sci Food Agric. 33:706-710.
Skrede, A. and Krogdahl, A. 1985. Heat affects nutritional characteristics of soybean meal and excretion of proteinases in mink and chicks. Nutr Rep Int. 32 : 479.
Steggerda, F. R. and Dimmick, J. F. 1966. Effects of bean diets on concentration of carbon dioxide in flatus. Am J Clin Nutr. 19 : 120-124.
Thomas, C. R. 1992. Image analysis: putting filamentous microorganism in the picture. TIBTECH. 10 : 343-348.
Vandergrift, W. L., Knabe, D. A., Tanksley, T. D., Jr. and Anderson, S. A. 1983. Digestibility of nutrients in raw and heated soyflakes for pigs. Anim Sci J. 57:1215-1224.
Wang, H. L. Vespa, J. B. and Hesseltine, C. W. 1974. Acid protease production by fungi used in soybean food fermentation. Appl Microbiol. 27 : 906-911.
Wang, Y., Jones P. J., Ausman, L. M. and Lichtenstein, A. H. 2004. Soy protein reduces triglyceride levels and triglyceride fatty acid fractional synthesis rate in hypercholesterolemic subjects. Atherosclerosis. 173 : 269-275.
Wei, Q. K., Jone, W. W. and Fang, T. J. 2004. Study on isoflavones isomers contents in Taiwan’s soybean and GM soybean. J Food Drug Anal. 12(4) : 324-331.
Wilson, S., Blaschek, K. and de Mejia, E. G. 2005. Allergenic proteins in soybean: processing and reduction of P34 allergenicity. Nutr Rev. 63(2) : 47-58
Yamamoto, K. 1957. Koji: effects of cultural temperature on the production of mold protease. Bull Agric Chem Soc Jpn. 21 : 319-324.
五、Electronic Resource
AOCS. Official Methods. Protein Dispersibility Index (PDI); Ba 10a-05. http://www.asa-europe.org/pdf/PDImethod.pdf
Mateos, G. G. and Lazaro, R. 2004. Whole soybeans in pigs'' diets. American soybean association. p. 12. http://www.asa-europe.org/pdf/pigsdiets.pdf
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top