|
[1] 王竹溪與郭敦仁. 特殊函數概論. 凡異出版社, 1993. [2] 徐樹方. 控制論中的矩陣計算. 北京: 高等教育出版社, 2011. [3] Peter Benner and Heike Faßbender. On the numerical solution of large-scale sparse discrete-time Riccati equations. Advances in Computational Mathematics, 35(2-4): 119–147, 2011. [4] Peter Benner, Alan J Laub, and Volker Mehrmann. A collection of benchmark examples for the numerical solution of algebraic Riccati equations i: Continuoustime case. In Fak. f. Mathematik, TU Chemnitz–Zwickau. Citeseer, 1995. [5] Peter Benner, Jing-Rebecca Li, and Thilo Penzl. Numerical solution of largescale Lyapunov equations, Riccati equations, and linear-quadratic optimal control problems. Numerical Linear Algebra with Applications, 15(9):755–777, 2008. [6] Peter Benner and Jens Saak. A Galerkin-Newton-ADI method for solving largescale algebraic Riccati equations. 2010. [7] Peter Benner and André Schneider. Model order and terminal reduction approaches via matrix decomposition and low rank approximation. In Scientific Computing in Electrical Engineering SCEE 2008, pages 523–530. Springer, 2010. [8] Russell Carden. Ritz values and Arnoldi convergence for nonsymmetric matrices. ProQuest, 2009. [9] Yi-Ru Chao. A survey on numerical solutions for algebraic Riccati equations. Master Thesis, NCKU, 2007. [10] Eric King-Wah Chu, Hung-Yuan Fan, Wen-Wei Lin, and Chern-Shun Wang. Structure-preserving algorithms for periodic discrete-time algebraic Riccati equations. International Journal of Control, 77(8):767–788, 2004. [11] Biswa Nath Datta. Numerical methods for linear control systems: design and analysis. Access Online via Elsevier, 2004. [12] Gene H Golub and Charles F Van Loan. Matrix computations, volume 3. JHU Press, 2012. [13] Ming Gu and Stanley C Eisenstat. Efficient algorithms for computing a strong rank-revealing QR factorization. SIAM Journal on Scientific Computing, 17(4): 848–869, 1996. [14] Chun-Hua Guo and Peter Lancaster. Analysis and modificaton of Newton’s method for algebraic Riccati equations. Mathematics of Computation of the American Mathematical Society, 67(223):1089–1105, 1998. [15] Yu-Ling Lai, Kun-Yi Lin, and Wen-Wei Lin. An inexact inverse iteration for large sparse eigenvalue problems. Numerical Linear Algebra with Applications, 4(5):425–437, 1997. [16] Hsing-Chuan Li. A modified computation strategy for low-rank approximate solution of large-scale algebraic Riccati equation. Ph.D. Thesis, NSYSU, 2014. [17] Jing-Rebecca Li and Jacob White. Low rank solution of Lyapunov equations. SIAM Journal on Matrix Analysis and Applications, 24(1):260–280, 2002. [18] Tiexiang Li, Eric King-Wah Chu, Yueh-Cheng Kuo, and Wen-Wei Lin. Solving large-scale nonsymmetric algebraic Riccati equations by doubling. SIAM Journal on Matrix Analysis and Applications, 34(3):1129–1147, 2013. [19] Tiexiang Li, Eric King-Wah Chu, and Wen-Wei Lin. Solving large-scale discretetime algebraic Riccati equations by doubling. Technical report, NCTS Preprints in Mathematics, National Tsing Hua University, Hsinchu, Taiwan, 2012. [20] An Lu and Eugene L Wachspress. Solution of Lyapunov equations by alternating direction implicit iteration. Computers & Mathematics with Applications, 21(9): 43–58, 1991. [21] Hermann Mena and Jens Saak. On the parameter selection problem in the Newton-ADI iteration for large-scale Riccati equations. Electronic Transactions on Numerical Analysis, 29:136–149, 2008. [22] Chris Paige. Properties of numerical algorithms related to computing controllability. Automatic Control, IEEE Transactions on, 26(1):130–138, 1981. [23] Donald W Peaceman and Henry H Rachford, Jr. The numerical solution of parabolic and elliptic differential equations. Journal of the Society for Industrial & Applied Mathematics, 3(1):28–41, 1955. [24] Thilo Penzl. A cyclic low-rank Smith method for large sparse Lyapunov equations. SIAM Journal on Scientific Computing, 21(4):1401–1418, 1999. [25] Andrew P Sage and Chelsea C White. Optimum systems control, volume 2. Prentice-Hall Englewood Cliffs, NJ, 1977. [26] Ji-Guang Sun. Perturbation theory for algebraic Riccati equations. SIAM Journal on Matrix Analysis and Applications, 19(1):39–65, 1998. [27] Paul Van Dooren and Michel Verhaegen. On the use of unitary state-space transformations. Contemporary Mathematics on Linear Algebra and its Role in Systems Theory, 47, 1985. [28] William T. Vetterling. Numerical Recipes Example Book. Cambridge University Press, 2002. [29] Eugene L Wachspress. ADI iterative solution of Lyapunov equations. pages 229–231, North-Holland, Amsterdam, 1992. [30] W Murray Wonham. Linear multivariable control: a geometric approach, volume 3. Springer-Verlag New York, 1979. [31] Shu-Fang Xu. Sensitivity analysis of the algebraic Riccati equations. Numerische Mathematik, 75(1):121–134, 1996.
|