跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.59) 您好!臺灣時間:2025/10/11 23:27
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:黃柏維
研究生(外文):Po-Wei Huang
論文名稱:模糊流動性排程之過早性和延遲性之研究
論文名稱(外文):Earliness and Tardiness in Fuzzy Flow Shop Scheduling Problem Based on Possibility and Necessity Measures
指導教授:吳憲忠
指導教授(外文):Hsien-Chung Wu
學位類別:碩士
校院名稱:國立高雄師範大學
系所名稱:數學系
學門:數學及統計學門
學類:數學學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:中文
論文頁數:53
中文關鍵詞:模糊數過早性和延遲性過早性演算法延遲性最大值模糊完工期限模糊加工時間模糊完成時間
外文關鍵詞:Fuzzy numbersEarliness and TardinessFuzzy due dateFuzzy processing timeFuzzy completion time
相關次數:
  • 被引用被引用:0
  • 點閱點閱:132
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本篇論文的主旨在於探究模糊加工時間和模糊完工期限如何解決流動性排成問題。 "模糊過早性" 還有 "模糊延遲性" 的概念來自於對任意兩個模糊數間的減法還有其關係的最大值, 其算法則是採用在模糊理論中著名的 ''延伸理論'' 。而目標函數則是利用模糊過早性還有模糊延遲性透過權重之和而得 ,
在此情況下目標函數將變為模糊數值函數 。此論文的目的在於得到一個最佳化排程,我們將使用基因演算法來解此問題。因此 MATLAB 將被用來解一些數值例子。
The scheduling problem with fuzzy processing times and fuzzy due
dates are concerned in this thesis. The fuzzy earliness and fuzzy
tardiness are proposed based on the concepts of subtraction and
maximum of any two fuzzy numbers, which are defined by using the
well-known ''Extension Principle'' in fuzzy sets theory. The
objective function is taken as the weighted sum of fuzzy earliness
and fuzzy tardiness through the concept of addition among fuzzy
numbers. In this case, the objective function turns into a
fuzzy-valued function. The purpose of this thesis is to obtain an
optimal schedule which minimizes this fuzzy-valued objective
function. The genetic algorithm will be invoked to solve this
problem. Numerical examples are also provided to clarify the
discussion in this thesis by using the commercial software MATLAB.
第一章 緒論 5

第二章 模糊數 7

第三章 模糊完工時間的計算 11

3.1 具有共同延伸值得三角模糊數 11
3.2 三角模糊數 12
第四章 模糊延遲性與過早性 14
4.1 Approach I 14
4.1.1 流動排程問題的延遲性 15
4.1.2 流動排程問題的過早性 17
4.2 Approach II 19
4.2.1 流動排程問題的延遲性 19
4.2.2 流動排程問題的過早性 21
4.2.3 流動排程問題過早性和延遲性的探究 22
4.3 目標函數的解析公式 25
第五章 基因演算法的構成 42
第六章 實驗設計及結果 44
6.1 實驗參數設定與結果 44
6.1.1 流動排程問題延遲性的運算 45
6.1.2 流動排程問題延遲性的運算 46
6.1.3 流動排程問題延遲性和過早性的運算 47
6.2 實驗結果討論 47
第七章 結論 49
7.1 結論 49
7.2 未來的研究方向 49
參考文獻 50
[1] Bean, J.C.:
Genetic Algorithms and Random Keys for Sequencing and Optimization,
ORSA Journal on Computing 6 (1994) 154-160.

[2] Celano, G., Costa, A. and Fichera, S.,
An Evolutionary Algorithm for Pure Fuzzy Flowshop Scheduling Problems,
International Journal of Uncertaint, Fuzziness and Knowledge-Based
Systems 11 (2003) 655-669.

[3] Chanas, S. and Kasperski, A.,
Minimizing Maximum Lateness in a Single Machine Scheduling
Problem with Fuzzy Processing Times and Fuzzy Due Dates,
Engineering Applications of Artificial Intelligence 14 (2001) 377-386.

[4] Chanas, S. and Kasperski, A.,
On Two Single Machine Scheduling Problems with Fuzzy Processing Times and
Fuzzy Due Dates,
European Journal of Operational Research 147 (2003) 281-296.

[5] Chen, C.-L., Vempati, V.S. and Aljaber, N.:
An Application of Genetic Algorithm for Flow Shop Problems,
European Journal of Operational Research 80 (1995) 389-396.

[6] D. Dubois and H. Prade,
Ranking Fuzzy Numbers in The Setting of Possibility Theory,
Information Sciences 30 (1983) 183-224.

[7] Fortemps, P. and Roubens, M.
Ranking and Defuzzification Methods Based on Area Compensation,
Fuzzy Sets and Systems 82 (1996) 319-330.

[8] Gen, M. and Cheng, R.,
Genetic Algorithms and Engineering Design,
John Wiley & Sons, New York, 1997.

[9] Gen, M. and Cheng, R.,
Genetic Algorithms and Engineering Optimization,
John Wiley & Sons, New York, 2000.

[10] Z.-Q. Geng and Y.-R. Zou,
Using HGA to solve E/T scheduling problems with fuzzy processing time and
fuzzy due date,
IEEE International Conference on Systems, Man, and Cybernetics, 2001,
pp.1161-1166.

[11] D.E. Goldberg and R. Lingle,
Alleles, loci and the traveling salesman problem,
Proceedings of an International Conference on Genetic Algorithms and
Their Applications, 1985, pp.160-168.

[12] Harikrishnan, K.K. and Ishii, H.,
Single Machine Batch Scheduling Problem with Resource Dependent Setup
and Processing Time in the Presence of Fuzzy Due Date,
Fuzzy Optimization and Decision Making 4 (2005) 141-147.

[13] Ishibuchi, H., Yamamoto, N., Misaki, S. and Tanaka, H.,
Local Search Algorithms for Flow Shop Scheduling with Fuzzy Due-Dates,
International Journal of Production Economics 33 (1994) 53-66.

[14] Ishibuchi, H., Yamamoto, N., Murata, T. and Tanaka, H.,
Genetic Algorithms and Neighborhood Search Algorithms for Fuzzy Flowshop
Scheduling Problems,
Fuzzy Sets and Systems 67 (1994) 81-100.

[15] Ishii, H., Tada, M. and Masuda, T.,
Two Scheduling Problems with Fuzzy Due-Dates,
Fuzzy Sets and Systems 46 (1992) 339-347.

[16] Itoh, T. and Ishii, H.,
Fuzzy Due-Date Scheduling Problem with Fuzzy Processing Time,
International Transactions in Operational Research 6 (1999) 639-647.

[17] Itoh, T. and Ishii, H.,
One Machine Scheduling Problem with Fuzzy Ranom Due-Dates,
Fuzzy Optimization and Decision Making 4 (2005) 71-78.

[18] Klir, G.J. and Yuan, B.,
Fuzzy Sets and Fuzzy Logic: Theory and Applications,
Prentice-Hall, 1995.

[19] Liu, B.,
Uncertainty Theory: An Introduction to Its Aximatic Foundations,
Springer-Verlag, Berlin, Germany, 2004.

[20] Murata, T., Gen, M. and Ishibuchi, H.:
Multiobjective Scheduling with Fuzzy Due Date,
Computers and Industrial Engineering 35 (1998) 439-442.

[21] C.V. Negoita and D.A. Ralescu, Applications of Fuzzy
Sets to Systems Analysis, Wiley, NY, 1975.

[22] Pinedo, M.,
Scheduling: Theory, Algorithms and Systems (2nd),
Prentice Hall, NJ, 2002.

[23] Reeves, C.R.:
A Genetic Algorithm for Flowshop Sequencing,
Computers and Operations Research 22 (1995) 5-13.

[24] Sakawa, M. and Kubota, R.,
Fuzzy Programming for Multiobjective Job Shop Scheduling with Fuzzy
Processing Time and Fuzzy Duedate through Genetic Algorithms,
European Journal of Operational Research 120 (2000) 393-407.

[25] Sakawa, M. and Mori, T.,
An Efficient Genetic Algorithm for Job-Shop Scheduling Problems with
Fuzzy Processing Time and Fuzzy Duedate,
Computers and Industrial Engineering 36 (1999) 325-341.

[26] Slowinski, R. and Hapke, M. (eds),
Scheduling under Fuzziness,
Physica-Verlag, New York, 2000.

[27] Zadeh, L.A., Fuzzy Sets, Information and Control 8
(1965), 338-353.

[28] Zadeh, L.A., The Concept of Linguistic Variable and Its
Application to Approximate Reasoning I, II and III, Information
Sciences 8 (1975), 199-249, 8 (1975), 301-357 and 9 (1975), 43-80.

[29] Zimmermann, H.-J.:
Fuzzy Sets Theory and Its Applications (2nd),
Kluwer Academic Publishers, New York, 1991.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. 【4】 彭朱如,司徒達賢,于卓民,醫療產業跨組織合作方案與管理機制之關係,管理學報,第十七卷,第2期,頁221-268,2000。
2. 【4】 彭朱如,司徒達賢,于卓民,醫療產業跨組織合作方案與管理機制之關係,管理學報,第十七卷,第2期,頁221-268,2000。
3. 【4】 彭朱如,司徒達賢,于卓民,醫療產業跨組織合作方案與管理機制之關係,管理學報,第十七卷,第2期,頁221-268,2000。
4. 【10】 黃貝玲,「協同商務價值鏈管理」,電子化企業經理人報告,第20 期,頁12-23,2001。
5. 【10】 黃貝玲,「協同商務價值鏈管理」,電子化企業經理人報告,第20 期,頁12-23,2001。
6. 【10】 黃貝玲,「協同商務價值鏈管理」,電子化企業經理人報告,第20 期,頁12-23,2001。
7. 【14】 蕭瑞麟,「協同商務為B2B合作帶來新境界」,管理雜誌,第332期,頁100-103,2002。
8. 【14】 蕭瑞麟,「協同商務為B2B合作帶來新境界」,管理雜誌,第332期,頁100-103,2002。
9. 【14】 蕭瑞麟,「協同商務為B2B合作帶來新境界」,管理雜誌,第332期,頁100-103,2002。
10. 【15】 張光森、陳昌郎,「電子化印刷企業供應鏈協同作業模式雛型之研究」,中華印刷科技年報,2004。
11. 【15】 張光森、陳昌郎,「電子化印刷企業供應鏈協同作業模式雛型之研究」,中華印刷科技年報,2004。
12. 【15】 張光森、陳昌郎,「電子化印刷企業供應鏈協同作業模式雛型之研究」,中華印刷科技年報,2004。
13. 【22】 羅明通,「P2P資源共享架構之傳輸及重製在著作權法上之評價--兼論折衷式與無階式(NO-TIER)P2P之技術差異」,月旦法學雜誌,第94期,2003。
14. 【22】 羅明通,「P2P資源共享架構之傳輸及重製在著作權法上之評價--兼論折衷式與無階式(NO-TIER)P2P之技術差異」,月旦法學雜誌,第94期,2003。
15. 【22】 羅明通,「P2P資源共享架構之傳輸及重製在著作權法上之評價--兼論折衷式與無階式(NO-TIER)P2P之技術差異」,月旦法學雜誌,第94期,2003。