跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.182) 您好!臺灣時間:2025/10/10 11:52
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:王祖顥
研究生(外文):Tzu-Hao Wang
論文名稱:低溫固晶材料應用於高功率發光二極體之微結構與熱性質分析
論文名稱(外文):Characterizations of microstructure and thermal property of low-temperature die-bonding materials for high-power light-emitting diodes
指導教授:陳志銘陳志銘引用關係
指導教授(外文):Chih-Ming Chen
口試委員:林明澤林吉甫
口試委員(外文):Ming-Tzer LinChi-Pu Lin
口試日期:2015-01-22
學位類別:碩士
校院名稱:國立中興大學
系所名稱:化學工程學系所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:中文
論文頁數:68
中文關鍵詞:發光二極體固晶介金屬化合物微結構散熱光衰
外文關鍵詞:LEDDie-bondingIMCMicrostructureThermal DissipationLuminous decrease
相關次數:
  • 被引用被引用:0
  • 點閱點閱:191
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
高功率發光二極體(High-power light-emitting diode, HP-LED)因具有高發光率、省電、無汞、壽命長等優勢,逐漸取代市面上傳統的白熾燈泡成為固態照明的主流。目前LED的輸入電功率僅有一半左右轉換為光能,其餘則轉換成熱能,若未能適時將熱移除,勢必影響二極體元件的發光強度與壽命。以傳統水平結構GaN型LED為例,熱能大部分藉傳導方式由晶片背面,經接合之固晶材料(die-bonding materials)以及印刷電路板、散熱鰭片等路徑排出,因此,散熱儼然成為LED製程相當重要的課題。
其中固晶材料直接與LED晶片接合是散熱排除的第一道途徑,由於製程成本考量,傳統封裝廠常以銀膠或高分子膠等作為LED的固晶材料,但隨著發光效率的需求提升,其輸入功率也同步提高,由於較低的熱傳導係數無法及時將高功率LED所產生的熱導出,使得LED晶片內部結點溫度過高,造成LED壽命衰減。因此,散熱特性優秀的金屬類銲料近年來發展相當迅速,傳統在封裝產業上,錫鉛銲料由於其熔點低(183℃),在電子產業中被廣泛使用,然而,鉛會嚴重影響人類的中樞神經,製程廢棄物亦會汙染環境,歐盟也於2006年發布RoHs指令禁止電子產品含有鉛物質,取而代之的材料種類繁多,常見如錫膏如(SnAgCu合金)、錫鉍銲膏(SnBi合金)與金錫銲料(Au-20%Sn合金)等作為替代的固晶材料,但因Au-20%Sn合金與SnAgCu合金熔點較高(280、220℃↑),為使其熔化,固晶製程的溫度必須提升至銲料熔點之上,可能造成模組熱應力問題以及製程成本提高。
本研究接續先期研究所開發出的新型低溫金屬固晶接合製程,將鉍/錫分別鍍於以銅鍍錫為表面金屬層之商用散熱基板,再以低溫熱壓方式使錫鉍原子藉由交互擴散達成共晶組成,使界面發生液-固反應完成固晶接合,爾後以長效熱處理與高溫信賴性測試分析此低溫固晶製程對於LED的微結構變化、固晶接附力、光特性與熱特性之影響。

The high-power light-emitting diodes substitute traditional incandescent gradually because of their high luminous efficiency, electricity saving, mercury less and longer life time. Currently, only half of the input power transforms into light for light emitting diodes operation, the rest half transforms into heat. If heat cannot be dissipated timely, the luminous intensity and life time of LEDs decrease. For GaN-based LEDs, heat dissipates from LED backside, die-bonding materials, MCPCB, and heat sink. Thus, heat dissipation technology is very important in LED fabrication.
Die attach adhesive (DAA) is the first path for LED heat dissipation. Considering the fabricate cost, silver paste or epoxy paste are usually used for the die-bonding process. In order to reach the requirement of increasing luminous efficiency, the input power needs to be increase. However, those DAAs have low thermal conductivity which can’t dissipate heat immediately. The increasing of junction temperature will decrease LED life time. In packaging fabrication, electronic industry used Pb-Sn solder because of its low melting point (~183℃). However, metallic Pb affects the central nervous system of human body and also contaminates the environments. In 2006, European Union unit defined a rule (RoHs) which mentioned that Pb cannot be used in the electronics products. Therefore, some replacement materials about Sn-Ag-Cu, Sn-Bi or Au-Sn solder come out in these several years. However, some of them have a high melt point which increases manufacture cost or is harmful to thermal stress issue.
This study follows a previous research in our laboratory which developed a new low-temperature die-bonding structure fabrication. A trilayer of Sn/Bi/Sn was deposited on a MCPCB substrate as the die-bonding material for a LED die. The eutectic Sn/Bi system melts at a lower eutectic temperature (138℃) by using a facile thermocompression process, and accomplished the die bonding via liquid/solid reactions. Meanwhile, the microstructure, adhesives shear strength, optical and thermal properties will be the main points in this investigation.

目錄
致謝 i
中文摘要 ii
Abstract iii
目錄 iv
圖目錄 vi
表目錄 ix
第一章 前 言 1
第二章 文獻回顧 2
(一) 高功率發光二極體之原理與發展趨勢 2
2.1.1 發光二極體之發光原理與製程 2
2.1.2 發光二極體之發展與課題 4
(二) 高功率發光二極體固晶製程與分析 18
2.2.1 發光二極體構裝介紹 18
2.2.2 界面反應 20
2.2.3 熱學量測分析儀之原理 25
2.2.4 機械性質分析簡介 27
第三章 實驗方法 31
(一) 高功率發光二極體之固晶材料開發與分析 31
3.1.1 固晶材料之製備與樣品製作 31
3.1.2 發光二極體之特性分析方法 35
3.1.3 發光二極體之固晶機械性質分析方法 36
(二) 高功率發光二極體之固晶界面反應 36
3.2.1 發光二極體固晶過程之液/固反應 36
3.2.1 發光二極體封裝完成後之固/固反應 41
3.2.2 發光二極體之金相樣品之製備與分析 41
第四章 結果與討論 43
(一) 高功率發光二極體之固晶材料與界面分析 43
4.1.1 固晶材料微結構分析 43
4.1.2 固晶材料熱處理微結構分析 46
(二) 高功率發光二極體之固晶材料與界面分析 49
4.2.1 固晶材料對LED之表面溫度分析 49
4.2.2 固晶材料對LED之熱暫態特性分析 52
4.2.3 固晶材料對LED之光衰特性分析 54
(三) 高功率發光二極體之機械性質分析 55
第五章 結論 64
(一) 實驗結論 64
(二) 未來展望 65
第六章 參考文獻 66


[1] 陳隆建, 「LED元件與產業概況」, 臺北市, 五南圖書出版股份有限公司 (2012)。
[2] Luqiao Yin, Lianqiao Yang, Guangming Xu, Huafeng Yan, Yu Chen, Weiqiao Yang, Shuzhi Li, Jianhua Zhang, “Effects of Die-attach Materials on the Optical Durability and Thermal Performances of HP-LED,“ International Conference on Electronic Packaging Technology& High Density Packaging, IEEE , pp. 1116-1119 (2011).
[3] Jae-Won Jang, Sehoon Yoo, Hyo-Soo Lee and Chang-Woo Lee, “Effect of reflow temperature on the mechanical drop performance of Sn-Bi solder joint,“ Int. J. Materials and Structura l Integrity, Vol. 8, pp. 88-97 (2014).
[4] Li-Chin Cheng, Chin-Ming Chen, Ming-Guan Chen, Chi-Chang Hu, Hsin-Yi Jiang, Ray-Hua Horng, Dong-Sing Wuu, “A high-temperature die-bonding structure fabricated at low temperature for light-emitting diodes,“ Electron device letters, IEEE, Vol. 36, No. 8, pp. 835-837 (2015).
[5] Kenneth R. Spring, Thomas J. Fellers, Michael W. Davidson, “Introduction to Light Emitting Diodes,” Olympus Microscopy Resource Center (2012)
[6] 史光國, 「InGaN LED量子井之特性(上)」, 工業材料雜誌, 第188期, 第190-196頁 (2002)。
[7] 呂紹旭, 「LED產品發展趨勢」, 光連雙月刊, 第35-46頁 (2012)。
[8] 邱國創, 「LED高散熱封裝基板技術之發展與開發」, 工業材料雜誌,第306期, 第169-176頁 (2012)。
[8] Yang Liu, Fenglian Sun, Hao Zhang, Tong Xin, Cadmus A. Yuan, Guoqi Zhang, “Interfacial reaction and failure mode analysis of the solder joints for flip-chip LED on ENIG and Cu-OSP surface finishes,” Microelectronics Reliability, pp. 1234-1240 (2015)
[9] Nadarajah Narendran and Yimin Gu, “Life of LED-Based White Light Sources,” Journal of Display Technology, vol. 1, pp. 167-171 (2005).
[10] ASSIT, “LED Life for General Lighting: Definition of Life,” vol. 1, Lighting Research Center, Rensselaer Polytechnic Insitute, 21 Union St., Troy, New York, USA (2005)
[11] “LED Measurement Series: LED Luminaire Reliability,” Energy Efficiency and Renewable Energy, U.S. Department of Energy (2006).
[12] 蔡偉智, 「功率發光二極管的壽命預測」, 半導體技術, 第33卷, 第10期, 第902-904頁 (2008)。
[13] Guangjun Lu, Cadmus Yuan, Hongyu Tang, Cell Wong, Xuejun Fan, G.Q. Zhang, “ Cause Analysis on Highly Depreciated Indoor LED Product in CSA020,“ Solid State Lighting (ChinaSSL), IEEE, pp. 48-51 (2013).
[14] Sau Koh, Cadmus Yuan, Bo Sun, Bob Li, Xuejun Fan, G.Q. Zhang, “Product Level Accelerated Lifetime Test for Indoor LED Luminaires,“ Thermal, Mechanical and Multi-Physics Simulation and Experiments in Microelectronics and Microsystems (EuroSimE), IEEE, pp. 1-6 (2013).
[15] Jianlin Huang, Dusan S. Golubovic, Sau Koh, Daoguo Yang, Xiupeng Li, Xuejun Fan, and G. Q. Zhang, “Degradation Mechanisms of Mid-Power White-Light LEDs Under High-Temperature-Humidity Conditions,“ Device and Materials Reliability, IEEE, vol. 15, pp. 220-228 (2015).
[16] “Cree XLamp LED Reliability, “
[17] C.-J. Chen, C.-M. Chen, R.-H. Horng, D.-S. Wuu, and J.-S. Hong, “Thermal Management and Interfacial Properties in High-Power GaN-Based Light-Emitting Diodes Employing Diamond-Added Sn-3 wt.% Ag-0.5 wt.% Cu solder as a Die-Attach Material,” Journal of electronic materials, Vol. 39, pp. 2618-2626 (2010).
[18] Chenmin LIU, Dong Lu, Xianxin LANG, Ashley Choi, Peter WM Lee, “Effects of Surface Treatments on the Performance of High Thermal Conductive Die Attach Adhesives (DAAs),“ Electronic Materials and Packaging, IEEE, pp. 1-5 (2012)
[19] Fei Weng, Peng Song, Jinlong Zhang, Jianhua Zhang, Luqiao Yin, “ Effect of Die-attach Materials and Thickness on the Reliability of HP-LED,“ Electronic Packaging Technology, IEEE, pp. 1048-1052 (2013).
[20] J.-Y. Wu, C.-M. Chen, R.-H. Horng, and D.-S. Wuu, “An Efficient Metal-Core Printed Circuit Board With a Copper-Filled Through (Blind) Hole for Light-Emitting Diodes,” Electron Device Letters, IEEE, Vol. 34, pp. 105-107 (2013).
[21] C.-P. Wang, S.-P. Ying, Y.-C. Su, and T.L. Chang, “Thermal Analysis of Eutectic Flip-Chip Light-Emitting Diodes Fabricated Using Copper-Coated Ceramic Substrate,“ Electron Devices, IEEE, vol. 62, No. 8 (2015)
[22] Green Energy Innovations, ‘LED Architecture and Design Concepts”
[23] 蘇永道、吉愛華、趙超, 「LED構裝技術」, 臺北市, 五南圖書出版股份有限公司 (2015)。
[24] Official Journal of the European Union, “Directive 2002/95/EC of the European parliament and of the Council of 27 January 2003: on the Restriction of the Use of Certain Hazardous Substances in Electrical and electronic equipment” (2003)
[25] Janka Chriastel’ov ˇ a´ , Milan Ozvold, “Properties of solders with low melting point,“ Journal of Alloys and Compounds, Vol. 457, pp. 323-328 (2008).
[26] J.C. Madeni, S. Liu, “Formation and Growth of Intermetallics at the Interface Between Lead-free Solders and Copper Substrates,“ NIST (2003).
[27] Xiaowu Hu, Yulong Li, Zhixian Min, “Interfacial reaction and growth behavior of IMCs layer between Sn-58Bi solders and a Cu substrate,“ Materials in Electronics, vol. 24, Issue 6, pp. 2027-2034 (2013).
[28] 李隆盛, 「紅外線顯像儀應用於建築物檢測維護之探討」, 技師期刊,第69期,第56-66頁 (2015)。
[29] 王建評、黃勝邦, 「LED封裝界面熱阻量測技術」, 工業材料雜誌, 第87-91頁 (2009)。
[30] V. Székely, “A new evaluation method of thermal transient measurement result,“ Microelectronics Journal, Vol. 28, pp. 277-292 (1997).
[31] V. Székely and T. Van Bien, “Fine structure of heat flow path in semiconductor devices: a measurement and identification method,“ Solid-State Electronics, Vol. 31, pp.517-521 (2010).
[32] Gábor Farkas, Shatil Haque, Frank Wall, Paul S. Martin, András Poppe, Quint van Voorst Vader, György Bognár, “Electric and thermal transient effects in high power optical devices,“ Semiconductor Thermal Measurement and Management Symposium, IEEE, pp. 168-176 (2004).
[33] Guoguang Lu, Shaohua Yang, Yun Huang, “Analysis on Failure Modes and Mechanisms of LED,“ Reliability, Maintainability and Safety, IEEE, pp. 1237-1241 (2009).
[34] Department of Defense, “Test Method Standard-833E,” Defense Supply Center Columbus (1997).
[35] Yang Liu, Fenglian Sun, Hao Zhang, Tong Xin, Cadmus A. Yuan, Guoqi Zhang, ”Interfacial reaction and failure mode analysis of the solder joints for flip-chip LED on ENIG and Cu-OSP surface finishes,” Microelectronics Reliability, vol. 55, pp. 1234-1240 (2015).
[36] Wensheng Liu, Yikai Wang, Yunzhu Ma, Qiang Yu, Yufeng Huang, “Interfacial microstructure evolution and shear behavior of Au–20Sn/(Sn)Cu solder joints bonded at 250°C,” Materials Science and Engineering: A, vol. 651, pp. 626-635 (2015).
[37] 鄭莉瑾, 「高功率發光二極體之低溫固晶與熱管理分析」, 碩士論文, 國立中興大學化學工程研究所, 台中 (2015)
[38] Karlsen, O. B., Kjekshus, A. and Rost, E. Acta Chem. Scand., “Ternary Phases in the System Au--Cu--Sn”, vol. 44 (1990).
[39] Larsson, A.-K., Stenberg, L., Lidin, S., “The superstructure of domain-twinned η''-Cu6Sn5, “ Acta Cryst., pp. 636-643 (1994).


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top