跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.81) 您好!臺灣時間:2025/10/04 14:38
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:李岳霖
研究生(外文):Yue-Lin Lee
論文名稱:覆晶銲錫與銅金屬墊間之電遷移效應
論文名稱(外文):Electromigration effects between the flip-chip solder and copper pad
指導教授:林明澤林明澤引用關係
指導教授(外文):Ming-tzer Lin
口試委員:陳志銘徐炯勛
口試委員(外文):Chih-Ming ChenJiung Shiun Shiu-
口試日期:2016-07-20
學位類別:碩士
校院名稱:國立中興大學
系所名稱:精密工程學系所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:中文
論文頁數:85
中文關鍵詞:電遷移銅錫擴散介金屬反應無鉛銲料四點探針量測電阻
外文關鍵詞:ElectromigrationCopper-tin diffusionIntermetallic reactionsLead-free soldersFour-Point Probe Measurement.
相關次數:
  • 被引用被引用:0
  • 點閱點閱:319
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究探討焊料和銅基板之間電遷移缺陷的影響,針對焊料和銅基板加熱過程中進行三種變因之測試;加熱、通電加熱、通電加熱並施加的壓力。之後觀察反應介金屬之微觀結構的變化,透過四點探針測量測得的電阻率的變化,結果發現隨著加熱時間增加,100℃和200℃的介金屬化合物厚度增加,溫度效應與高電流密度會誘發空洞的生成,隨著測試時間加長而加劇。對於僅加熱處理組別中,介金屬化合物的生長機制通過晶界擴散的控制;對於施加電流和加熱組,介金屬化合物的生長機制是由體積擴散和界面反應為主;對於加熱,施加電流和施加的應力組,介金屬化合物的生長機制是由晶界擴散與晶粒生長為主。在電阻率的增加百分比線性變化,斜率隨著溫度增加而增加時,並且電阻率的變化與介金屬微觀結構的變化有密切相關。

In this study, the investigation of electromigration defects due to currents stress effects between solder and copper substrate were performed. Experiments were tested during heating,heating and applied current,heating, applied current and applied stress. We observed microstructural changes, measured resistivity changes and stress were provided by using fourpoint probe measurements. The result show that intermetallic compound thickness increases with increasing heating time both 100℃ and 200℃, effect of temperature and high current density can induce the generation of voids, this phenomenon is exacerbated with extended test time. For heattreated only samples, the intermetallic compound growth mechanism controlled by grain boundary diffusion. For applied current and heating samples, the intermetallic compound growth mechanism was dominated by volume diffusion and interface reaction. For the heating, applied current and applied stress groups, the intermetallic compound growth mechanism were dominated by grain boundary diffusion with grain growth. The percentage increase in the resistivity changes linearly, as the temperature increases the slope increases, resistivity change with the film microstructural changes are closely related.

摘要 
目錄 
表目錄 
圖目錄 
符號說明 
第一章 緒論 1
1.1 前言與研究背景介紹 1
1.2 研究動機與目的 2
1.3論文架構 3
第二章 文獻回顧 4
2.1電子產品封裝簡介 4
2.2覆晶封裝 5
2.3無鉛銲料 6
2.4 可靠度測試 8
2.4 CU/SN 界面反應與介金屬概述 9
2.4.1相圖 9
2.4.2材料介面反應 11
2.5電遷移現象 12
2.5.1電遷移研究歷史 13
2.5.2電遷移理論型式[14,30,31] 14
2.5.4電流擁擠現象: 16
2.5.5焦耳熱現象: 16
2.6薄膜沉積方式 16
2.6.1薄膜濺鍍原理(Sputtering)[33, 34]: 17
2.6.2薄膜電鍍法(Electroplate): 19
第三章 實驗相關與試件製作流程 23
3.1實驗材料與儀器 23
3.2 試件設計 24
3.2.1矽基板清洗 24
3.2.2濺鍍鉭(Ta)擴散阻擋層 24
3.2.3 銅金屬墊製程 25
3.2.4 錫銲料製程 25
第四章 實驗系統與方法 28
4.1 前言 28
4.2 四點彎矩測試法 28
4.2.1背景 28
4.2.2四點彎矩載具簡介 28
4.2.3四點彎矩法計算原理 31
4.3四點探針量測電阻 32
4.4系統整合測試及實驗設計 34
4.4.1加熱熱儲存實驗 34
4.4.2通電模擬測試 35
4.4.3加熱通電實驗 36
4.4.4加熱通電施力實驗 36
4.5金相分析 37
第五章 結果與討論 40
5.1試片於不同溫度條件下之銅錫介金屬微結構觀察 41
5.2試片於不同溫度及通電條件下之介金屬微結構觀察 51
5.3試片於不同溫度與受力及通電條件下介金屬微結構變化討論 58
5.4介金屬化合物生長機制討論 70
5.4.1測試時間效應與微結構變化總結 70
5.4.2 介金屬厚度整理與機制討論 70
5.5四點探針量測結果討論 75
第六章 結論與未來展望 79
6.1結論 79
6.2未來展望 80
參考文獻 81



[1] J.S. Kilby, U.S. Patent 3,138,743, 1959
[2]Y. Yao, W. Yuexing , M.K Leon , E. F. Morris, “An analytical method to predict electromigration-induced finger-shaped void growth in SnAgCu solder interconnect”, Scripta Materialia ,vol 95 , pp 7–10, 2015.
[3] K. Zeng, R. Stierman, T.-C. Chiu, D. Edwards, K. Ano, and K. N. Tu,” Effects of Minor Fe, Co, and Ni Additions on the Reaction Between SnAgCu Solder and Cu”,J. Appl. Phys, vol 95, 2005.
[4] 許明哲(2011),先進微電子3D-IC構裝,五南圖書股份有限公司。
[5]R. R. Tummala,”Fundamentals of microsystems packaging”,McGraw-Hill
International Edition,Ch.7, pp.266-294, 2001.
[6] L. Halbo ,P. Ohlcker, Electronics Components, Packaging and Production,1993.
[7] M.Ousama,L.Ladani,” IMC growth of Sn-3.5Ag/Cu system: Combined chemical reaction and diffusion mechanisms”, Journal of Alloys and Compounds, Vol 537, pp 87–99,2012.
[8] 黃家瑋,林光隆,電子構裝無鉛銲料的現況與發展,銲接與切割,13卷2期,2003。
[9] 陳冠達,無鉛銲料與銅鋅合金之界面反應,國立臺灣科技大學化學工程系碩士學位論文(2014)。
[10]李昭慶,Sn-xAg-0.7Cu 無鉛銲料微結構與低週疲勞研究,國立成功大學機械工程學系碩士學位論文(2013)
[11]傅寬裕(2011) ,半導體IC產品可靠度統計物理與工程第二版,五南圖書股份有限公司。
[12] F. N. Rhines, Phase diagrams in metallurgy, McGraw-Hill, New York, 1956.
[13]陳志銘,Sn-Co-(Cu) / Ni 固/固界面反應與電遷移效應對界面反應之影響,國立清華大學化學工程研究所碩士學位論文(2011)。
[14]鄧雯菁,錫銀覆晶銲錫隆點之電遷移研究,國立成功大學材料工程研究所碩士學位論文(2011)。
[15] D.Q. Yu, L. Wang, “Interfacial Reaction of Sn-Ag-Cu Lead-Free Solder Alloy on Cu: A Review”, Journal of Alloys and Compounds, vol 458,pp 542–547, 2008.
[16] M.hashiba,” Kinetics of Solid-State Reactive Diffusion in the (Pd-Ni)/Sn System”,Journal of electronic materials, vol 41, 2012.
[17] A. Nakane, T. Suzuki1, M. Kajihara,”Observation on Isothermal Reactive Diffusion between Solid Ni and Liquid Sn”, The Japan Institute of Metals andMaterials,2016.
[18] M. hashiba,”Kinetics of Reactive Diffusion in the (Pd-Cu)/Sn System at Solid-State Temperatures”, Journal of electronic materials, Vol. 43, 2014.
[19] H. Ceric, S. Selberherr ,” Electromigration in submicron interconnect features of integrated circuits”, Materials Science and Engineering, Vol. 71, pp53-86, 2014.
[20] K. Kusaka, T. Hanabusa, S. Shingubara, T.Matsue , O.Sakata,” K. Kusaka, T. Hanabusa, S. Shingubara, T.Matsue , O.Sakata”, Vacuum, Vol. 83, pp637-640, 2009.
[21] H. B. Huntington, A.R. Grone, Journal of Physics and Chemistry of Solids,Vol.20,pp76-87,1961.
[22] I. A. Blech,” Electromigration in thin aluminum films on titanium nitride”, Journal of Physics, Vol 47, 1976.
[23] I. A. Blech, C. Herring,” Diffusional Viscosity of a Polycrystalline Solid”,Journal of Physics, vol 29,1976.[24] J. R. Black, “Electromigration and failure in electronics: An introduction”,IEEE Trans. On Electron Devices,vol.16, pp348-350,1969.
[25] H. Onoda,M. Kageyama. Y. Tatara,Y. Fukuda,IEEE trans. On Electron Devices, vol40,pp1614-1620,1993.
[26] H. Onoda, M. Kageyama, K. Hashimoto,”Al-Si crystallographic-orientation transition in Al-Si/TiN layered structures and electromigration performance as interconnects”,J. Appl. Phys, vol77,pp885-892,1996.
[27]J. O. Olowolafe ,H. Kawasaki ,C. C. Lee ,J. Klein ,F. Pintchovski and D.Jawarani, Applied Physics Letters,vol62,pp1993-2443,1993.
[28] J. Wada, K. Suguro,N. Hayasaka , H. okano, Japanese Journal of Applied Physics,vol 32,1993.
[29]H.W. Tseng, C.T. Lu, Y.H. Hsiao, P.L. Liao, Y.C. Chuang, T.Y. Chung, C.Y. Liu, ” Electromigration-induced failures at Cu/Sn/Cu flip-chip joint interfaces”,Microelectronics Reliability ,vol 50, pp1159–1162, 2010.
[30]胡應強,覆晶接點與錫電路之電遷移微結構變化模式研究,國立中央大學化學工程與材料工程研究所博士學位論文,2005。
[31]林宗寬,覆晶銲錫之電遷移研究:溫度對破壞機制的影響與電阻曲線之分析,國立交通大學材料工程研究所博士學位論文,2014。
[32] S. H. Chiu, T. L. Shao, Chih Chen,” Infrared microscopy of hot spots induced by Joule heating in flip-chip SnAg solder joints under accelerated electromigration”, J. Appl. Phys, vol 88 , 2006.
[33] I. Petrov ,P. B. Barna ,J. E. Greene,” Microstructural evolution during film growth”, Journal of Vacuum Science and Technology A , vol. 21, pp. 117–128 ,2003.
[34] Milton Ohring, Materials Science of Thin Films (Second Edition),2002.
[35] N. Kanani, Electroplating-Basic Principles, Process and Practice, 1st ed., Elsevier,2004.
[36] 康菀珊,電鍍電位與鍍液離子濃度和pH 值對電鍍碲化鉍的影響,國立臺灣大學工學院材料科學與工程研究所碩士學位論文,2012。
[37] 鄭冠暉,電鍍參數對直流電鍍鎳錳合金微結構與機械性質之影響,國立台北科技大學製造科技研究所碩士學位論文,2014。
[38]鍾鴻欽,反應性磁控濺鍍鉭及氮化鉭基薄膜之微結構及其熱穩定性之研究,國立成功大學材料科學及工程學系碩士學位論文,2002。
[39] C.C. Lee, Overview of interfacial fracture energy predictions for stacked thin films using a four-point bending framework, Surface and Coatings Technology, Volume 237, pp 333–340,2013.
[40] J. Ding,Y. Meng,S. Wen,Thin Solid Films, vol 371 , pp1-2,2000.
[41] F. Mujika, On the difference between flexural moduli obtained by three-point and four-point bending tests, Polymer Testing, vol 25,pp 214-220,2006
[42] J.Nahlik,I. Kasparkova , P.Fitl, Study of quantitative influence of sample defects on measurements of resistivity of thin films using van der Pauw method, Measurement, vol 44,pp 1968–1979,2011.
[43] A. Mian , J. Law, Computational investigation of van der Pauw structures for MEMS pressure sensors, Computational Materials Science, vol 49,pp 652–662,2010.
[44]J. L. Cieśliński, Thin Solid Films ,vol 522 ,pp314–317,2012.
[45] M.K. Jeong, J.W.Kim, B.H. Kwak, Y.B Park, Effects of annealing and current stressing on the intermetallic compounds growth kinetics of Cu/thin Sn/Cu bump, Microelectronic Engineering, vol 89, pp 50–54, 2012.
[46]C.Yu , Y.Yang , J.Chen , J.Xu , J.Chen , H.Lu, Effect of deposit thickness during electroplating on Kirkendall voiding at Sn/Cu joints, Materials Letters, vol 128,pp 9-11,2014.
[47] P.L. Liu, J.K. Shang, Segregant-induced cavitation of Sn/Cu reactive interface, Scripta Materialia,vol 53 ,pp 631–634 ,2005.
[48] A. Paul, C. Ghosh, W.J. Boettinger, Diffusion Parameters and Growth Mechanism of Phases in the Cu-Sn System, The Minerals, Metals & Materials Society and ASM International, 2010.
[49] J.Y. Song, Jin Yu, T.Y. Lee, Effects of reactive diffusion on stress evolution in Cu–Sn films, Scripta Materialia, vol 51, pp167–170,2004.
[50] C. K. Lin, W.A.Tsao, Y. C. Liang, Chih Chen, Temperature-dependent failure mechanism of SnAg solder joints with Cu metallization after current stressing: Experimentation and analysis, Journal of Applied Physics,vol 114,pp 28-35,2013.
[51] C. Xu, Y. Zhang, C. Fan, J. A. Abys, Driving Force for the Formation of Sn Whiskers:Compressive Stress—Pathways for Its Generation and Remedies for Its Elimination and Minimization, IEEE Xplore: IEEE Transactions on Electronics Packaging Manufacturing, vol 28,2005.
[52]G.T. Galyon, L. Palmer, An Integrated Theory of Whisker Formation: The Physical Metallurgy of Whisker Formation and the Role of Internal Stresses, IEEE Xplore: IEEE Transactions on Electronics Packaging Manufacturing, vol 28,2005.
[53] A. Furuto,M. Kajihara, Numerical Analysis for Kinetics of Reactive Diffusion Controlled by Boundary and Volume Diffusion in a Hypothetical Binary System, Materials Transactions, Vol. 49, pp. 294 -303,2008.
[54] A. Nakane ,T. Suzuki, Masanori Kajihara, Observation on Isothermal Reactive Diffusion between Solid Ni and Liquid Sn, Materials Transactions Special Issue on Frontier Researches Related to Interconnection, Packaging and Microjoining Materials and Microprocessing,2016.
[55] M. Hashiba, W. Shinmei, M. Kajihara, Kinetics of Solid-State Reactive Diffusion in the (Pd-Ni)/Sn System, Journal of Electronic Materials, Vol. 41, pp 32-43,2012.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊